

Contents lists available at ScienceDirect Journal of Functional Analysis

www.elsevier.com/locate/jfa

Moment measures

癯

D. Cordero-Erausquin^a, B. Klartag^b

^a Institut de Mathématiques de Jussieu and Institut Universitaire de France,
 Université Pierre et Marie Curie (Paris 6), 4 place Jussieu, 75252 Paris, France
 ^b School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

ARTICLE INFO

Article history: Received 19 April 2014 Accepted 2 April 2015 Available online 23 April 2015 Communicated by Cédric Villani

Keywords: Moment measure Prékopa theorem Toric Kähler–Einstein metrics

ABSTRACT

With any convex function ψ on a finite-dimensional linear space X such that ψ goes to $+\infty$ at infinity, we associate a Borel measure μ on X^{*}. The measure μ is obtained by pushing forward the measure $e^{-\psi(x)} dx$ under the differential of ψ . We propose a class of convex functions – the essentially-continuous, convex functions – for which the above correspondence is in fact a bijection onto the class of finite Borel measures whose barycenter is at the origin and whose support spans X^{*}. The construction is related to toric Kähler–Einstein metrics in complex geometry, to Prékopa's inequality, and to the Minkowski problem in convex geometry.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The aim of the present work is to extend the results on moment measures obtained by Berman and Berndtsson [3] in their work on Kähler–Einstein metrics in toric manifolds, which builds upon earlier works by Wang and Zhu [29], by Donaldson [10] and by E. Legendre [21]. Simultaneously, our analysis of moment measures should be viewed as a functional version of the classical Minkowski problem (see, e.g., Schneider [27, Section 7.1]) or the logarithmic Minkowski problem of Böröczky, Lutwak, Yang and

http://dx.doi.org/10.1016/j.jfa.2015.04.001 0022-1236/© 2015 Elsevier Inc. All rights reserved.

E-mail addresses: cordero@math.jussieu.fr (D. Cordero-Erausquin), klartagb@tau.ac.il (B. Klartag).

Zhang [6]. Yet a third point of view is that we discuss a certain kind of Monge–Ampère equation, and establish existence and uniqueness of generalized solutions.

Suppose that $\psi : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a convex function, i.e., for any $0 < \lambda < 1$ and $x, y \in \mathbb{R}^n$,

$$\psi\left(\lambda x + (1-\lambda)y\right) \le \lambda\psi(x) + (1-\lambda)\psi(y)$$

whenever $\psi(x) < +\infty$ and $\psi(y) < +\infty$. In this note, we treat $+\infty$ as a legitimate value of convex functions, and we use relations such as $\exp(-\infty) = 0$ whenever they make sense. The function ψ is locally-Lipschitz and hence differentiable almost everywhere in the interior of the set

$$\{\psi < +\infty\} = \{x \in \mathbb{R}^n \, ; \, \psi(x) < +\infty\}.$$

In Kähler geometry, the map

$$x \longrightarrow \nabla \psi(x),$$

defined almost-everywhere in $\{\psi < +\infty\}$, is closely related to the *moment map* of a toric Kähler manifold, see, e.g. Abreu [1] or Gromov [17]. When the function ψ is finite and smooth, the set

$$\nabla\psi(\mathbb{R}^n) = \{\nabla\psi(x); x \in \mathbb{R}^n\}$$
(1)

is necessarily convex. In certain cases of interest the convex set (1) is in fact a polytope, which is referred to as the *moment polytope*; a central role is played by a family of polytopes known as *Delzant polytopes* which carry a particular geometric structure.

In this article, we consider convex functions $\psi : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ that satisfy the integrability condition $0 < \int \exp(-\psi) < \infty$. This condition, for a convex function ψ , is equivalent to the following two requirements:

- (i) The convex set $\{\psi < +\infty\}$ is not contained in a hyperplane; and
- (ii) $\lim_{|x| \to \infty} \psi(x) = +\infty.$

We associate with such ψ the finite (log-concave) measure ν_{ψ} on \mathbb{R}^n whose density is $\exp(-\psi)$.

Definition 1. Given a convex function $\psi : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ with $0 < \int \exp(-\psi) < \infty$, we define its moment measure μ to be the Borel measure on \mathbb{R}^n which is the push-forward of ν_{ψ} under $\nabla \psi$. This means that

$$\int_{\mathbb{R}^n} b(y) \, d\mu(y) = \int_{\mathbb{R}^n} b(\nabla \psi(x)) \, e^{-\psi(x)} \, dx \tag{2}$$

for every Borel function b such that $b \in L^1(\mu)$ or b is non-negative.

Download English Version:

https://daneshyari.com/en/article/4590035

Download Persian Version:

https://daneshyari.com/article/4590035

Daneshyari.com