

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

The spectral density of a product of spectral projections

Rupert L. Frank^{a,*}, Alexander Pushnitski^b

ARTICLE INFO

Article history: Received 12 September 2014 Accepted 26 March 2015 Available online 14 April 2015 Communicated by B. Schlein

Keywords: Schrödinger operators Anderson orthogonality catastrophy Spectral asymptotics Hankel operators

ABSTRACT

We consider the product of spectral projections

$$\Pi_{\varepsilon}(\lambda) = \mathbb{1}_{(-\infty,\lambda-\varepsilon)}(H_0)\mathbb{1}_{(\lambda+\varepsilon,\infty)}(H)\mathbb{1}_{(-\infty,\lambda-\varepsilon)}(H_0)$$

where H_0 and H are the free and the perturbed Schrödinger operators with a short range potential, $\lambda>0$ is fixed and $\varepsilon\to 0$. We compute the leading term of the asymptotics of ${\rm Tr}\,f(\Pi_\varepsilon(\lambda))$ as $\varepsilon\to 0$ for continuous functions f vanishing sufficiently fast near zero. Our construction elucidates calculations that appeared earlier in the theory of "Anderson's orthogonality catastrophe" and emphasizes the role of Hankel operators in this phenomenon.

 $\ \, \odot$ 2015 Elsevier Inc. All rights reserved.

E-mail addresses: rlfrank@caltech.edu (R.L. Frank), alexander.pushnitski@kcl.ac.uk (A. Pushnitski).

^a Mathematics 253-37, Caltech, Pasadena, CA 91125, USA

^b Department of Mathematics, King's College London, Strand, London, WC2R 2LS, UK

^{*} Corresponding author.

1. Introduction

1.1. Motivation from mathematical physics

This paper is partly motivated by a phenomenon called "Anderson's orthogonality catastrophe", which has been intensively discussed in the physics literature and has recently attracted attention from a mathematical perspective; see [2,6,3] and the literature cited therein. Let H_0 and H be the free and the perturbed Schrödinger operators

$$H_0 = -\Delta$$
, $H = -\Delta + V$ in $L^2(\mathbb{R}^d)$, $d \ge 1$,

where, for the sake of simplicity, the real-valued potential V is assumed to be bounded and compactly supported. For $\lambda > 0$, consider the product of spectral projections

$$\Pi(\lambda) = \mathbb{1}_{(-\infty,\lambda)}(H_0)\mathbb{1}_{(\lambda,\infty)}(H)\mathbb{1}_{(-\infty,\lambda)}(H_0) \quad \text{in } L^2(\mathbb{R}^d).$$
 (1.1)

One is interested in regularised versions of $\Pi(\lambda)$, obtained by replacing the step functions $\mathbb{1}_{(-\infty,\lambda)}$, $\mathbb{1}_{(\lambda,\infty)}$ by functions with disjoint supports. More precisely, we consider two types of regularisations of $\Pi(\lambda)$,

$$\Pi_{\varepsilon}^{(1)}(\lambda) = \mathbb{1}_{(-\infty,\lambda-\varepsilon)}(H_0)\mathbb{1}_{(\lambda+\varepsilon,\infty)}(H)\mathbb{1}_{(-\infty,\lambda-\varepsilon)}(H_0)$$
(1.2)

and

$$\Pi_{\varepsilon}^{(2)}(\lambda) = \psi_{\varepsilon}^{-}(H_0 - \lambda)\psi_{\varepsilon}^{+}(H - \lambda)\psi_{\varepsilon}^{-}(H_0 - \lambda), \qquad (1.3)$$

where ψ_{ε}^{\pm} are continuous functions on $\mathbb R$ that satisfy $0 \leq \psi_{\varepsilon}^{\pm} \leq 1$ and

$$\psi_{\varepsilon}^{+}(x) = \begin{cases} 0 & \text{if } x \leq \varepsilon, \\ 1 & \text{if } x \geq 2\varepsilon, \end{cases} \qquad \psi_{\varepsilon}^{-}(x) = \begin{cases} 1 & \text{if } x \leq -2\varepsilon, \\ 0 & \text{if } x \geq -\varepsilon. \end{cases}$$
 (1.4)

It is not difficult to see that the operators $\Pi_{\varepsilon}^{(j)}(\lambda)$, j=1,2, are trace class. On the other hand, $\Pi(\lambda)$ is typically not trace class and not even compact. We discuss the asymptotics of traces

$$\operatorname{Tr} f(\Pi_{\varepsilon}^{(j)}(\lambda)), \qquad \varepsilon \to 0, \quad j = 1, 2,$$
 (1.5)

where f = f(t) is a continuous function which vanishes sufficiently fast as $t \to 0$.

It turns out that the asymptotics of the traces (1.5) is given in terms of the scattering matrix $S(\lambda)$ for the pair H_0 , H at energy λ . Let $\{e^{i\theta_{\ell}(\lambda)}\}_{\ell=1}^L$ be the eigenvalues of $S(\lambda)$, enumerated with multiplicities taken into account. The scattering matrix is an operator in $L^2(\mathbb{S}^{d-1})$ for $d \geq 2$ and is a 2×2 matrix for d = 1; thus, $L = \infty$ for $d \geq 2$ and L = 2 for d = 1. Denote

$$a_{\ell}(\lambda) = \frac{1}{2} \left| e^{i\theta_{\ell}(\lambda)} - 1 \right| = \left| \sin \frac{\theta_{\ell}(\lambda)}{2} \right| \in [0, 1], \qquad \ell = 1, \dots, L.$$
 (1.6)

Download English Version:

https://daneshyari.com/en/article/4590036

Download Persian Version:

https://daneshyari.com/article/4590036

<u>Daneshyari.com</u>