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Let H be a separable Hilbert space, A be a Schatten–
von Neumann operator in H with the finite norm N2p(A) =
[Trace(AA∗)p]1/2p for an integer p ≥ 1 and N1(T ) =
Trace(TT ∗)1/2 be the trace norm of a trace operator T . It 
is proved that

∞∑
k=1

∣∣λk(A)
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N4p
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4
N2
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A,A∗]

p

)]1/2
,

where λk(A) (k = 1, 2, ...) are the eigenvalues of A, [A, A∗]p =
Ap(A∗)p−(A∗)pAp; A∗ is the adjoint to A. This results refines 
the classical inequality 

∑∞
k=1 |λk(A)|2p ≤ N2p

2p (A). Lower 
bounds for N1([A, A∗]p) are also suggested. In addition, if 
A is a Hilbert–Schmidt operator, we improve the well-known 
inequality

∞∑
k=1

∣∣Im λk(A)
∣∣2 ≤ N2

2 (AI),

where AI = (A −A∗)/2i.
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1. Introduction and statements of the main results

Let H be a separable Hilbert space with a scalar product (., .), the norm ‖.‖ =
√

(., .)
and the unit operator I.

For a linear operator A in H, A∗ is the adjoint operator, σ(A) is the spectrum, 
λk(A) (k = 1, 2, ...) are the eigenvalues of A with their multiplicities enumerated in the 
non-increasing order of their absolute values: |λk(A)| ≥ |λk+1(A)|. By SNp (p = 1, 2, ...)
we denote the Schatten–von Neumann ideal of compact operators A with the finite norm

Np(A) :=
[
Trace

(
AA∗)p/2]1/p,

cf. [1,5,8]. In particular, N1(A) is the trace norm of a trace operator A and N2(A)
is the Hilbert–Schmidt norm of A ∈ SN2. In addition, [A, A∗] = AA∗ − A∗A is the 
self-commutator and

[
A,A∗]

p
=

[
Ap,

(
A∗)p] = Ap

(
A∗)p − (

A∗)pAp.

So [A, A∗] = [A, A∗]1.
The aim of present paper is to prove the following result.

Theorem 1.1. For any A ∈ SN2p (p = 1, 2, ...), one has

∞∑
k=1
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. (1.1)

All the proofs are presented in the next section. Theorem 1.1 refines the classical 
inequality

∞∑
k=1

∣∣λk(A)
∣∣2p ≤ N2p

2p (A), (1.2)

cf. [5, Corollary II.3.1].
For any compact selfadjoint operator T whose entries in an orthogonal normal basis 

are tjk (j, k = 1, 2, ...) we have

m∑
k=1

∣∣λk(T )
∣∣ ≥ m∑

k=1

|tjj | (m = 1, 2, ...), (1.3)

cf. [5, Section II.4.3]. So, if c(p)jk (j, k = 1, 2, ...) are the entries of [A, A∗]p in an orthogonal 
normal basis, then
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