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This work is concerned with the dynamics of a slow–
fast stochastic evolutionary system quantified with a scale 
parameter. An invariant foliation decomposes the state space 
into geometric regions of different dynamical regimes, and 
thus helps understand dynamics. A slow invariant foliation is 
established for this system. It is shown that the slow foliation 
converges to a critical foliation (i.e., the scale parameter 
is zero) in probability distribution, as the scale parameter 
tends to zero. The approximation of slow foliation is also 
constructed with error estimate in distribution. Furthermore, 
the geometric structure of the slow foliation is investigated: 
every fiber of the slow foliation parallels each other, with the 
slow manifold as a special fiber. In fact, when an arbitrarily 
chosen point of a fiber falls in the slow manifold, the fiber 
must be the slow manifold itself.
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Slow–fast stochastic evolutionary 
system
Geometric structure

1. Introduction

Random fluctuations may have delicate effects on dynamical evolution of complex 
systems [1,8,10,26]. The slow–fast stochastic evolutionary systems are appropriate math-
ematical models for various multi-scale systems under random influences.

We consider the following slow–fast stochastic evolutionary system

dxε

dt
= Axε + f

(
xε, yε

)
+ σ1Ẇ1, in Hs, (1.1)

dyε

dt
= 1

ε
Byε + 1

ε
g
(
xε, yε

)
+ σ2√

ε
Ẇ2, in Hf , (1.2)

where ε is a small positive parameter (0 < ε � 1). The Hilbert spaces Hs and Hf , linear 
operators A and B, nonlinearities f and g, and mutually independent Wiener processes 
W1 and W2 will be specified in the next section. The white noises Ẇ1 and Ẇ2 are the 
generalized time derivatives of W1 and W2, respectively. The positive constants σ1 and 
σ2 are the intensities of white noises. Since the small scale parameter ε is such that 
‖dx
dt ‖Hs

� ‖dy
dt ‖Hf

, we usually say that x is the “slow” component and y is the “fast” 
component.

The main goal of this paper is to investigate state space decomposition for this system, 
by considering a slow invariant foliation, and examining its approximation and structure.

Invariant foliations and invariant manifolds play a significant role in the study of the 
qualitative dynamical behaviors, as they provide geometric structures to understand or 
reduce stochastic dynamics [4,5,7,11–13,18,20,21]. An invariant foliation is about quan-
tifying certain sets (called fibers or leaves) in state space for a dynamical system. A fiber 
consists of all those points starting from which the dynamical orbits are exponentially 
approaching each other, in forward time (“stable foliation”) or backward time (“un-
stable foliation”). These fibers are thus building blocks for understanding dynamics, as 
they carry dynamical information. Collectively they provide a decomposition of the state 
space.

For a system like (1.1)–(1.2), Schmalfuss and Schneider [22] studied the slow mani-
fold in the finite dimensional case. Wang, Duan, and Roberts [25,24] further studied the 
slow manifold, and a relation with averaging as quantified via large deviations and ap-
proximations. In the infinite dimensional setting, Fu, Liu and Duan [15] investigated the 
slow manifold and its approximation. These research works are at the level of geometric 
and global invariant sets. In the context of analyzing individual sample solution paths, 
Freidlin [14] used large deviation theory to describe the dynamics, and Berglund and 
Gentz [3] showed that the sample solution paths are concentrated in a neighborhood of 
the critical manifold (also see [17]).
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