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In the paper, we first use the energy method to establish the
local well-posedness as well as blow-up criteria for the Cauchy
problem on the two-component Euler—Poincaré equations in
multi-dimensional space. In the case of dimensions 2 and 3,
we show that for a large class of smooth initial data with

%225 some concentration property, the corresponding solutions
35Q35 blow up in finite time by using Constantin—Escher Lemma

and Littlewood—Paley decomposition theory. Then for the
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a global existence result are also established by using similar
methods. Next, we investigate the zero density limit and the
zero dispersion limit. At the end, we also briefly demonstrate
a Liouville type theorem for the stationary weak solution.
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1. Introduction

In this paper, we consider the Cauchy problem on the following two-component Euler—
Poincaré equations in multi-dimensional space RY (N > 2):

my+u-Vm+ (Vu)Im +mV-u=—pVp, inRY x (0,7T),

pt+ V- (pu) =0, in RY x (0,7), (L1)
m= (1-a?A)u, in RY x (0,7), .
m(x,O) :mo(-f), p(.I‘,O) Zpo(l‘), in RNa

where u = (u1,us, -, uy) represents the velocity of fluid, m = (my,ma,---,my) de-

notes the momentum, and the scalar function p stands for the density or the total depth.
The notation (Vu)T denotes the transpose of the matrix Vu. The constant a > 0 cor-
responds to the length scale and is called the dispersion parameter. Egs. (1.1) were
presented by [22,25] as a framework for modeling and analyzing fluid dynamics, partic-
ularly for nonlinear shallow water waves, geophysical fluids and turbulence modeling, or
recasting the geodesic flow on the diffeomorphism groups. In the case of a = 0, Eqgs. (1.1)
are called zero-dispersive Euler—Poincaré equations and can be written as

ug +u-Vu+ (Vu)Tu+uV-u=—pVp, inRY x(0,7),
P+ V- (pu) = 0, in RN x (0,7), (1.2)
U(J),O) ZUO('T)v p(.ﬁ,O) ZPO(I‘)’ in RNv

which is a symmetric hyperbolic system of conservation laws (see (2.5) below).

To motivate our study, we recall some related progresses on Egs. (1.1). When the
system is decoupled (i.e., formally, p = 0), Egs. (1.1) reduce to the classical mathematical
model of the fully nonlinear shallow water waves or the one of the geodesic motion on
diffeomorphism group:

my+u-Vm+ (Vu)Im +mV-u=0, inRY x (0,7T),
m = (1-a?A)u, in RN x (0,7), (1.3)
m(z,0) = mo(x), in RY

(see [3,5,20,21,23]). In particular, Egs. (1.3) are the classical Camassa—Holm equations

for N = 1, while they are also called the Euler—Poincaré equations in the higher di-
mensional case N > 1. The local well-posedness, blow-up criterion, existence of blow-up
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