

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Uniform pointwise bounds for matrix coefficients of unitary representations on semidirect products

Zhenqi Jenny Wang¹

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

ARTICLE INFO

Article history: Received 16 June 2012 Accepted 24 March 2014 Available online 26 April 2014 Communicated by J. Bourgain

MSC: primary 22E46, 22E50 secondary 22D10, 22E30, 22E35

Keywords: Matrix coefficient Unitary representation Projection-valued measure Mackey machine

ABSTRACT

Let k be a local field of characteristic 0, and let G be a connected semisimple almost k-algebraic group. Suppose rank_k $G \ge 1$ and ρ is an excellent representation of G on a finite dimensional k-vector space V. We construct uniform pointwise bounds for the K-finite matrix coefficients restricted on G of all unitary representations of the semi-direct product $G \ltimes_{\rho} V$ without non-trivial V-fixed vectors. These bounds turn out to be sharper than the bounds obtained from G itself for some cases. As an application, we discuss a simple method of calculating Kazhdan constants for various compact subsets of the pair ($G \ltimes_{\rho} V, V$).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let k be a local field of char k = 0. We say that G is a (connected) almost k-algebraic group if G is a (connected) k-Lie group with finite center for k isomorphic to \mathbb{R} or G is the group of k-rational points of a (connected) linear algebraic group \tilde{G} over k for k

E-mail address: wangzq@math.msu.edu.

¹ The author is supported by NSF grant DMS-1346876.

non-archimedean or isomorphic to \mathbb{C} . Unless stated otherwise, G denotes a connected semisimple almost k-algebraic group with $\operatorname{rank}_k(G) \ge 1$ and \tilde{G} denotes its underlying algebraic group; that is, $G = \tilde{G}(k)$ for k non-archimedean or isomorphic to \mathbb{C} .

1.1. Finite-dimensional representations of G

For a finite dimensional vector space V over k, a representation $\rho : G \to GL(V)$ is called *normal* if ρ is continuous for k isomorphic to \mathbb{R} ; or if ρ is a k-rational map for k non-archimedean or isomorphic to \mathbb{C} .

There is a decomposition $G = G_c G_s$ (resp. $\tilde{G} = \tilde{G}_c \tilde{G}_s$) where G_c (resp. \tilde{G}_c) is the product of compact factors (resp. k-anisotropic factors) of G (resp. \tilde{G}) and G_s (resp. \tilde{G}_s) is the product of non-compact factors (resp. k-isotropic factors) of G (resp. \tilde{G}) when k is isomorphic to \mathbb{R} (resp. non-archimedean or isomorphic to \mathbb{C}).

Denote by G_i (resp. \tilde{G}_i), $1 \leq i \leq j$, the non-compact factors (resp. k-isotropic factors) of G (resp. \tilde{G}). Also set $G_s = \tilde{G}_s(k)$ and $G_i = \tilde{G}_i(k)$ for k non-archimedean or isomorphic to \mathbb{C} . We call these G_i the non-compact almost k-simple factors of G.

Definition 1.1. A normal representation ρ of G on V is called *good* if the $\rho(G_s)$ -fixed points in V are $\{0\}$; and ρ is called *excellent* if $\rho(G_i)$ -fixed points in V are $\{0\}$ for each non-compact almost k-simple factor G_i of G.

In this paper we present an "upper bound function" for G-matrix coefficients for all unitary representations of $G \ltimes_{\rho} V$ without non-trivial V-fixed vectors if ρ is an excellent representation of G on V. Special cases of $SL(2,\mathbb{K})\ltimes\mathbb{K}^2$ and $SL(2,\mathbb{K})\ltimes\mathbb{K}^3$ are considered in [28] and [17] for a local field \mathbb{K} . For these cases the following conditions are satisfied: every orbit is locally closed (intersection of an open and a closed set) in the dual group \hat{V} ; and for each $\chi \in \widehat{V} \setminus \{0\}$ the stabilizer $S_{\chi} = \{g \in G \ltimes_{\rho} V \colon g \cdot \chi = \chi\}$ is amenable. The first one allows us to use the "Mackey machine" and the latter one implies that the G-matrix coefficients are bounded by the Harish-Chandra functions. Margulis also used this criterion in [26, Theorem 2] to prove Kazhdan's property (T) of the pair $(O_3(\mathbb{Q}_5) \ltimes \mathbb{Q}_3^5, \mathbb{Q}_3^5)$. In fact, if G is a connected almost k-algebraic group and ρ is a normal representation, then "Mackey machine" applies to the semidirect product $G \ltimes_{\rho} V$ and hence we have complete descriptions of the dual groups of $G \ltimes_{\rho} V$ (see [37, Theorem 7.3.1] or [35, Chapter 5.4]). Therefore any irreducible representation π of $G \ltimes_{\rho} V$ without non-trivial V-fixed vectors is induced from the ones on the stabilizers $S_{\chi}, \chi \in \widehat{V} \setminus \{0\}$. However, for general cases, the complexity of these stabilizers S_{χ} would require heavy analysis calculations.

Our work is an extension of the ideas of R.E. Howe and E.C. Tan [17, Chapter V, Theorem 3.3.1]. For $SL(2,\mathbb{R}) \ltimes \mathbb{R}^2$, they considered the system of imprimitivity based on $(SL(2,\mathbb{R}),\widehat{\mathbb{R}}^2)$ instead of "Mackey machine" to calculate upper bounds of SO(2)-finite matrix coefficients restricted on $SL(2,\mathbb{R})$. More precisely, the deformation of SO(2)-orbits under the natural dual action of the Cartan subgroup on $\widehat{\mathbb{R}}^2$ gives Download English Version:

https://daneshyari.com/en/article/4590109

Download Persian Version:

https://daneshyari.com/article/4590109

Daneshyari.com