Uniform pointwise bounds for matrix coefficients of unitary representations on semidirect products

Zhenqi Jenny Wang ${ }^{1}$
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

A R T I C L E I N F O

Article history:

Received 16 June 2012
Accepted 24 March 2014
Available online 26 April 2014
Communicated by J. Bourgain

$M S C$:

primary $22 \mathrm{E} 46,22 \mathrm{E} 50$
secondary $22 \mathrm{D} 10,22 \mathrm{E} 30,22 \mathrm{E} 35$
Keywords:
Matrix coefficient
Unitary representation
Projection-valued measure
Mackey machine

Abstract

Let k be a local field of characteristic 0 , and let G be a connected semisimple almost k-algebraic group. Suppose $\operatorname{rank}_{k} G \geqslant 1$ and ρ is an excellent representation of G on a finite dimensional k-vector space V. We construct uniform pointwise bounds for the K-finite matrix coefficients restricted on G of all unitary representations of the semi-direct product $G \ltimes{ }_{\rho} V$ without non-trivial V-fixed vectors. These bounds turn out to be sharper than the bounds obtained from G itself for some cases. As an application, we discuss a simple method of calculating Kazhdan constants for various compact subsets of the pair $\left(G \ltimes_{\rho} V, V\right)$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let k be a local field of char $k=0$. We say that G is a (connected) almost k-algebraic group if G is a (connected) k-Lie group with finite center for k isomorphic to \mathbb{R} or G is the group of k-rational points of a (connected) linear algebraic group \tilde{G} over k for k

[^0]non-archimedean or isomorphic to \mathbb{C}. Unless stated otherwise, G denotes a connected semisimple almost k-algebraic group with $\operatorname{rank}_{k}(G) \geqslant 1$ and \tilde{G} denotes its underlying algebraic group; that is, $G=\tilde{G}(k)$ for k non-archimedean or isomorphic to \mathbb{C}.

1.1. Finite-dimensional representations of G

For a finite dimensional vector space V over k, a representation $\rho: G \rightarrow G L(V)$ is called normal if ρ is continuous for k isomorphic to \mathbb{R}; or if ρ is a k-rational map for k non-archimedean or isomorphic to \mathbb{C}.

There is a decomposition $G=G_{c} G_{s}$ (resp. $\tilde{G}=\tilde{G}_{c} \tilde{G}_{s}$) where G_{c} (resp. \tilde{G}_{c}) is the product of compact factors (resp. k-anisotropic factors) of G (resp. $\tilde{G})$ and G_{s} (resp. \tilde{G}_{s}) is the product of non-compact factors (resp. k-isotropic factors) of G (resp. \tilde{G}) when k is isomorphic to \mathbb{R} (resp. non-archimedean or isomorphic to \mathbb{C}).

Denote by G_{i} (resp. $\left.\tilde{G}_{i}\right), 1 \leqslant i \leqslant j$, the non-compact factors (resp. k-isotropic factors) of G (resp. $\tilde{G})$. Also set $G_{s}=\tilde{G}_{s}(k)$ and $G_{i}=\tilde{G}_{i}(k)$ for k non-archimedean or isomorphic to \mathbb{C}. We call these G_{i} the non-compact almost k-simple factors of G.

Definition 1.1. A normal representation ρ of G on V is called good if the $\rho\left(G_{s}\right)$-fixed points in V are $\{0\}$; and ρ is called excellent if $\rho\left(G_{i}\right)$-fixed points in V are $\{0\}$ for each non-compact almost k-simple factor G_{i} of G.

In this paper we present an "upper bound function" for G-matrix coefficients for all unitary representations of $G \ltimes{ }_{\rho} V$ without non-trivial V-fixed vectors if ρ is an excellent representation of G on V. Special cases of $S L(2, \mathbb{K}) \ltimes \mathbb{K}^{2}$ and $S L(2, \mathbb{K}) \ltimes \mathbb{K}^{3}$ are considered in [28] and [17] for a local field \mathbb{K}. For these cases the following conditions are satisfied: every orbit is locally closed (intersection of an open and a closed set) in the dual group \widehat{V}; and for each $\chi \in \widehat{V} \backslash\{0\}$ the stabilizer $S_{\chi}=\left\{g \in G \ltimes_{\rho} V: g \cdot \chi=\chi\right\}$ is amenable. The first one allows us to use the "Mackey machine" and the latter one implies that the G-matrix coefficients are bounded by the Harish-Chandra functions. Margulis also used this criterion in [26, Theorem 2] to prove Kazhdan's property (T) of the pair $\left(O_{3}\left(\mathbb{Q}_{5}\right) \ltimes \mathbb{Q}_{3}^{5}, \mathbb{Q}_{3}^{5}\right)$. In fact, if G is a connected almost k-algebraic group and ρ is a normal representation, then "Mackey machine" applies to the semidirect product $G \ltimes_{\rho} V$ and hence we have complete descriptions of the dual groups of $G \ltimes_{\rho} V$ (see [37, Theorem 7.3.1] or [35, Chapter 5.4]). Therefore any irreducible representation π of $G \ltimes_{\rho} V$ without non-trivial V-fixed vectors is induced from the ones on the stabilizers $S_{\chi}, \chi \in \widehat{V} \backslash\{0\}$. However, for general cases, the complexity of these stabilizers S_{χ} would require heavy analysis calculations.

Our work is an extension of the ideas of R.E. Howe and E.C. Tan [17, Chapter V, Theorem 3.3.1]. For $S L(2, \mathbb{R}) \ltimes \mathbb{R}^{2}$, they considered the system of imprimitivity based on $\left(S L(2, \mathbb{R}), \widehat{\mathbb{R}^{2}}\right)$ instead of "Mackey machine" to calculate upper bounds of $S O(2)$-finite matrix coefficients restricted on $S L(2, \mathbb{R})$. More precisely, the deformation of $S O(2)$-orbits under the natural dual action of the Cartan subgroup on $\widehat{\mathbb{R}^{2}}$ gives

https://daneshyari.com/en/article/4590109

Download Persian Version:

https://daneshyari.com/article/4590109

Daneshyari.com

[^0]: E-mail address: wangzq@math.msu.edu.
 ${ }^{1}$ The author is supported by NSF grant DMS-1346876.

