Lie ring isomorphisms between nest algebras on Banach spaces ${ }^{\text {un }}$

Xiaofei $\mathrm{Qi}^{\mathrm{a}, \mathrm{b}}$, Jinchuan Hou ${ }^{\mathrm{a}, \mathrm{b}, *}$, Juan Deng ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, PR China
b Department of Mathematics, Shanxi University, Taiyuan, 030006, PR China

A R T I C L E I N F O

Article history:

Received 7 December 2012
Accepted 20 January 2014
Available online 20 February 2014
Communicated by K. Ball

Keywords:

Banach spaces
Nest algebras
Lie ring isomorphisms

Abstract

Let \mathcal{N} and \mathcal{M} be nests on Banach spaces X and Y over the (real or complex) field \mathbb{F} and let $\operatorname{Alg} \mathcal{N}$ and $\operatorname{Alg} \mathcal{M}$ be the associated nest algebras, respectively. It is shown that a $\operatorname{map} \Phi: \operatorname{Alg} \mathcal{N} \rightarrow \operatorname{Alg} \mathcal{M}$ is a Lie ring isomorphism (i.e., Φ is additive, Lie multiplicative and bijective) if and only if Φ has the form $\Phi(A)=T A T^{-1}+h(A) I$ for all $A \in \operatorname{Alg} \mathcal{N}$ or $\Phi(A)=-T A^{*} T^{-1}+h(A) I$ for all $A \in \operatorname{Alg} \mathcal{N}$, where h is an additive functional vanishing on all commutators and T is an invertible bounded linear or conjugate linear operator when $\operatorname{dim} X=\infty ; T$ is a bijective τ-linear transformation for some field automorphism τ of \mathbb{F} when $\operatorname{dim} X<\infty$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let \mathcal{R} and \mathcal{R}^{\prime} be two associative rings. Recall that a $\operatorname{map} \phi: \mathcal{R} \rightarrow \mathcal{R}^{\prime}$ is called a multiplicative map if $\phi(A B)=\phi(A) \phi(B)$ for any $A, B \in \mathcal{R}$; is called a Lie multiplicative map if $\phi([A, B])=[\phi(A), \phi(B)]$ for any $A, B \in \mathcal{R}$, where $[A, B]=A B-B A$ is the Lie product of A and B which is also called a commutator. In addition, a map $\phi: \mathcal{R} \rightarrow \mathcal{R}^{\prime}$ is called a Lie multiplicative isomorphism if ϕ is bijective and Lie multiplicative; is called

[^0]a Lie ring isomorphism if ϕ is bijective, additive and Lie multiplicative. If \mathcal{R} and \mathcal{R}^{\prime} are algebras over a field $\mathbb{F}, \phi: \mathcal{R} \rightarrow \mathcal{R}^{\prime}$ is called a Lie algebraic isomorphism if ϕ is bijective, \mathbb{F}-linear and Lie multiplicative. For the study of Lie ring isomorphisms between rings, see $[3,5,10]$ and the references therein. In this paper we focus our attention on Lie ring isomorphisms between nest algebras on general Banach spaces.

Let X be a Banach space over the (real or complex) field \mathbb{F} with topological dual X^{*}. $\mathcal{B}(X)$ stands for the algebra of all bounded linear operators on X. A nest \mathcal{N} on X is a complete totally ordered subspace lattice, that is, a chain of closed (under norm topology) subspaces of X which is closed under the formation of arbitrary closed linear span (denote by \bigvee) and intersection (denote by Λ), and which includes (0) and X. The nest algebra associated with a nest \mathcal{N}, denoted by $\operatorname{Alg} \mathcal{N}$, is the weakly closed operator algebra consisting of all operators that leave every subspace $N \in \mathcal{N}$ invariant. For $N \in \mathcal{N}$, let $N_{-}=\bigvee\{M \in \mathcal{N} \mid M \subset N\}$ and $N_{-}^{\perp}=\left(N_{-}\right)^{\perp}$, where $N^{\perp}=\left\{f \in X^{*} \mid N \subseteq \operatorname{ker}(f)\right\}$. If \mathcal{N} is a nest on X, then $\mathcal{N}^{\perp}=\left\{N^{\perp} \mid N \in \mathcal{N}\right\}$ is a nest on X^{*} and $(\operatorname{Alg} \mathcal{N})^{*} \subseteq \operatorname{Alg} \mathcal{N}^{\perp}$. If $\mathcal{N}=\{(0), X\}$, we say that \mathcal{N} is a trivial nest, in this case, $\operatorname{Alg} \mathcal{N}=\mathcal{B}(X)$. Non-trivial nest algebras are very important reflexive operator algebras that are not semi-simple, not semi-prime and not self-adjoint. If $\operatorname{dim} X<\infty$, a nest algebra on X is isomorphic to an algebra of upper triangular block matrices. Nest algebras are studied intensively by a lot of literatures. For more details on basic theory of nest algebras, the readers can refer to $[6,8]$.

In [9], Marcoux and Sourour proved that every Lie algebraic isomorphism between nest algebras on separable complex Hilbert spaces is a sum $\alpha+\beta$, where α is an algebraic isomorphism or the negative of an algebraic anti-isomorphism and $\beta: \operatorname{Alg} \mathcal{N} \rightarrow \mathbb{C} I$ is a linear map vanishing on all commutators, that is, satisfying $\beta([A, B])=0$ for all $A, B \in \operatorname{Alg} \mathcal{N}$.

Qi and Hou in [11] generalized the result of Marcoux and Sourour by classifying certain Lie multiplicative isomorphisms. Note that, a Lie multiplicative isomorphism needs not be additive. Let \mathcal{N} and \mathcal{M} be nests on Banach spaces X and Y over the (real or complex) field \mathbb{F}, respectively, with the property that if $M \in \mathcal{M}$ such that $M_{-}=M$, then M is complemented in Y (obviously, this assumption is not needed if Y is a Hilbert space or if $\operatorname{dim} Y<\infty)$. Let $\operatorname{Alg} \mathcal{N}$ and $\operatorname{Alg} \mathcal{M}$ be respectively the associated nest algebras, and let $\Phi: \operatorname{Alg} \mathcal{N} \rightarrow \operatorname{Alg} \mathcal{M}$ be a bijective map. Qi and Hou in [11] proved that, if $\operatorname{dim} X=\infty$ and if there is a nontrivial element in \mathcal{N} which is complemented in X, then Φ is a Lie multiplicative isomorphism if and only if there exists a map $h: \operatorname{Alg} \mathcal{N} \rightarrow \mathbb{F} I$ with $h([A, B])=0$ for all $A, B \in \operatorname{Alg} \mathcal{N}$ such that Φ has the form $\Phi(A)=T A T^{-1}+h(A)$ for all $A \in \operatorname{Alg} \mathcal{N}$ or $\Phi(A)=-T A^{*} T^{-1}+h(A)$ for all $A \in \operatorname{Alg} \mathcal{N}$, where, in the first form, $T: X \rightarrow Y$ is an invertible bounded linear or conjugate-linear operator so that $N \mapsto T(N)$ is an order isomorphism from \mathcal{N} onto \mathcal{M}, while in the second form, X and Y are reflexive, $T: X^{*} \rightarrow Y$ is an invertible bounded linear or conjugate-linear operator so that $N^{\perp} \mapsto T\left(N^{\perp}\right)$ is an order isomorphism from \mathcal{N}^{\perp} onto \mathcal{M}. If $\operatorname{dim} X=n<\infty$, identifying nest algebras with upper triangular block matrix algebras, then Φ is a Lie multiplicative isomorphism if and only if there exist a field automorphism $\tau: \mathbb{F} \rightarrow \mathbb{F}$ and

https://daneshyari.com/en/article/4590129

Download Persian Version:

https://daneshyari.com/article/4590129

Daneshyari.com

[^0]: This work is supported by National Natural Science Foundation of China (11171249, 11101250, 11271217) and Youth Foundation of Shanxi Province (2012021004).

 * Corresponding author.

 E-mail addresses: xiaofeiqisxu@aliyun.com (X.-F. Qi), jinchuanhou@aliyun.com (J.-C. Hou), juanhappyforever@163.com (J. Deng).

