

Contents lists available at ScienceDirect

Journal of Functional Analysis

Local energy decay for the damped wave equation

Jean-Marc Bouclet*, Julien Royer

Institut de Mathématiques de Toulouse, 118 route de Narbonne, 31062 Toulouse Cédex 9, France

ARTICLE INFO

Article history: Received 27 May 2013 Accepted 28 January 2014 Available online 18 February 2014 Communicated by I. Rodnianski

Keywords: Scattering theory Resolvent estimates

ABSTRACT

We prove local energy decay for the damped wave equation on \mathbb{R}^d . The problem which we consider is given by a long range metric perturbation of the Euclidean Laplacian with a short range absorption index. Under a geometric control assumption on the dissipation we obtain an almost optimal polynomial decay for the energy in suitable weighted spaces. The proof relies on uniform estimates for the corresponding "resolvent", both for low and high frequencies. These estimates are given by an improved dissipative version of Mourre's commutators method.

© 2014 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	4539
2.	Outline of the paper	4545
3.	Resolvent of dissipative operators	4550
4.	Time decay for the solution of the wave equation	4556
5.	Resolvent estimates for an abstract dissipative operator	4564
	5.1. Multiple commutators method in the dissipative setting	4564
	5.2. Inserted factors	4569
6.	Intermediate frequency estimates	4575
7.	Low frequency estimates	4578
	7.1. Some properties of the rescaled operators	4581

^{*} Corresponding author.

E-mail addresses: bouclet@math.univ-toulouse.fr (J.-M. Bouclet), julien.royer@math.univ-toulouse.fr (J. Royer).

	7.2.	Low frequency estimates for a small perturbation of the Laplacian	4588
	7.3.	General long range perturbations	4591
8.	High	frequency estimates	4595
9.	The c	ase of a Laplace–Beltrami operator	4602
Ackno	wledg	ments	4609
Apper	ndix A	Notation	4609
Apper	ndix B	Dissipative Mourre estimates: an example	4612
Refere	ences		4614

1. Introduction

We consider on \mathbb{R}^d , $d \ge 3$, the damped wave equation:

$$\begin{cases} \partial_t^2 u(t,x) + H_0 u(t,x) + a(x) \partial_t u(t,x) = 0 & \text{for } (t,x) \in \mathbb{R}_+ \times \mathbb{R}^d, \\ u(0,x) = u_0(x), & \partial_t u(0,x) = u_1(x) & \text{for } x \in \mathbb{R}^d. \end{cases}$$
(1.1)

Here H_0 is an operator in divergence form

$$H_0 = -\operatorname{div}(G(x)\nabla),$$

where G(x) is a positive symmetric matrix with smooth entries, which is a long range perturbation of the identity (see (1.2)). Laplace–Beltrami operators will be considered as well, but the case of operators in divergence form captures all the difficulties. The operator H_0 is self-adjoint and non-negative on $L^2(\mathbb{R}^d)$ with domain $H^2(\mathbb{R}^d)$. The function $a \in C^{\infty}(\mathbb{R}^d)$ is the absorption index. It takes non-negative values and is a short range potential. More precisely we assume that there exists $\rho > 0$ such that for $j, k \in [1, d]$, $\alpha \in \mathbb{N}^d$ and $x \in \mathbb{R}^d$ we have

$$\left|\partial^{\alpha} \left(G_{j,k}(x) - \delta_{j,k}\right)\right| \leqslant c_{\alpha} \langle x \rangle^{-\rho - |\alpha|} \quad \text{and} \quad \left|\partial^{\alpha} a(x)\right| \leqslant c_{\alpha} \langle x \rangle^{-1 - \rho - |\alpha|},$$
 (1.2)

where $\langle x \rangle = (1 + |x|^2)^{\frac{1}{2}}$, $\delta_{j,k}$ is the Kronecker delta and \mathbb{N} is the set of non-negative integers.

Let \mathcal{H} be the Hilbert completion of $\mathcal{S}(\mathbb{R}^d) \times \mathcal{S}(\mathbb{R}^d)$ for the norm

$$\|(u,v)\|_{\mathcal{H}}^2 = \|H_0^{1/2}u\|_{L^2}^2 + \|v\|_{L^2}^2. \tag{1.3}$$

Here we use the square root $H_0^{1/2}$ of the self-adjoint operator H_0 but the corresponding term in the above energy can also be written $\langle G(x)\nabla u, \nabla u\rangle_{L^2}$. Then $\mathcal{H} = \dot{H}^1 \times L^2$, \dot{H}^1 being the usual homogeneous Sobolev space on \mathbb{R}^d . We consider on \mathcal{H} the operator

$$\mathcal{A} = \begin{pmatrix} 0 & I \\ H_0 & -ia \end{pmatrix} \tag{1.4}$$

with domain

Download English Version:

https://daneshyari.com/en/article/4590134

Download Persian Version:

https://daneshyari.com/article/4590134

<u>Daneshyari.com</u>