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1. Introduction

We consider on RY, d > 3, the damped wave equation:

{ O2u(t,x) + Hou(t,z) + a(x)owu(t,z) =0 for (t,z) € Ry x RY (1.1)

u(0,2) = uo(x), Owu(0,2)=wui(x) for » € R%.

Here Hy is an operator in divergence form
Hy = —div(G(z)V),

where G(x) is a positive symmetric matrix with smooth entries, which is a long range
perturbation of the identity (see (1.2)). Laplace-Beltrami operators will be considered
as well, but the case of operators in divergence form captures all the difficulties. The op-
erator Hy is self-adjoint and non-negative on L?(R?) with domain H2(R¢). The function
a € C(RY) is the absorption index. It takes non-negative values and is a short range
potential. More precisely we assume that there exists p > 0 such that for j, k € [1,d],
a € N? and x € RY we have

|0 (Gj(x) = 6k)| < calz)™P7lel and |0%a(z)| < calz)~tmrlel, (1.2)

where () = (1 + |z[2), 0% is the Kronecker delta and N is the set of non-negative
integers.
Let H be the Hilbert completion of S(R?) x S(R?) for the norm

2 1/2 112
(s 0)[5, = [[Ho 2wl + IIv]13-- (1.3)
Here we use the square root HO1 /2 of the self-adjoint operator Hy but the corresponding

term in the above energy can also be written (G(z)Vu,Vu)y>. Then H = H' x L?,
H' being the usual homogeneous Sobolev space on R%. We consider on A the operator

(s 1)

with domain
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