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In this paper we study quantitative uniqueness estimates
of solutions to general second order elliptic equations with
magnetic and electric potentials. We derive lower bounds of
decay rate at infinity for any nontrivial solution under some
general assumptions. The lower bounds depend on asymptotic
behaviors of magnetic and electric potentials. The proof
is carried out by the Carleman method and bootstrapping
arguments.
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1. Introduction

In this paper we study the asymptotic behaviors of solutions to the general second
order elliptic equation

Pv + W (x) · ∇v + V (x)v + q(x)v = 0 in Ω := R
n\B̄, (1.1)

where B is a bounded set in Ω. Here P (x,D) =
∑

jk ajk(x)∂j∂k is uniformly elliptic,
i.e., for some λ0 > 0
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λ0|ξ|2 �
∑
jk

ajk(x)ξjξk � λ−1
0 |ξ|2 ∀x ∈ Ω, ξ ∈ R

n, (1.2)

and ajk(x) is Lipschitz continuous. We are interested in deriving lower bounds of the
decay rate for any nontrivial solution v to (1.1) under certain a priori assumptions. This
kind of problem was originally posed by Landis in the 60’s [9]. He conjectured that if v
is a bounded solution of

Δv + q(x)v = 0 in R
n (1.3)

with ‖q‖L∞ � 1 and |v(x)| � C exp(−C|x|1+) for some constant C, then v is identically
zero. This conjecture was disproved by Meshkov [12] who constructed a q(x) and a
nontrivial v(x) with |v(x)| � C exp(−C|x|4/3) satisfying (1.3). He also proved that if
|v(x)| � Ck exp(−k|x|4/3) for all k > 0 then v ≡ 0. Note that q(x) and v(x) constructed
by Meshkov are complex-valued. In 2005, Bourgain and Kenig [2] derived a quantitative
version of Meshkov’s result in their resolution of Anderson localization for the Bernoulli
model. Precisely, they showed that if v is a bounded solution of Δv + q(x)v = 0 in Rn

satisfying ‖q‖L∞ � 1 and v(0) = 1, then

inf
|x0|=R

sup
B(x0,1)

∣∣v(x)
∣∣ � C exp

(
−R4/3 logR

)
.

In view of Meshkov’s example, the exponent 4/3 is optimal.
Recently, Davey [4] derived similar quantitative asymptotic estimates for (1.1) with

P = −Δ and q(x) = −E ∈ C, i.e.,

−Δv + W (x) · ∇v + V (x)v = Ev. (1.4)

To describe her result, we define

I(x0) =
∫

|y−x0|<1

∣∣v(y)∣∣2 dy

and

M(t) = inf
|x0|=t

I(x0).

Assume that |V (x)| � 〈x〉−N and |W (x)| � 〈x〉−p̃, where 〈x〉 =
√

1 + |x|2. Then it was
shown that for any nontrivial bounded solution v of (1.4) with v(0) = 1, we have

M(t) � exp
(
−Ctβ0(log t)b(t)

)
, (1.5)

where
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