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This paper studies the periodic feedback stabilization for a
class of linear T -periodic evolution equations. Several equiv-
alent conditions on the linear periodic feedback stabilization
are obtained. These conditions are related to the following
subjects: the attainable subspace of the controlled evolution
equation under consideration; the unstable subspace (of the
evolution equation with the null control) provided by the Kato
projection; the Poincaré map associated with the evolution
equation with the null control; and two unique continuation
properties for the dual equations on different time horizons
[0, T ] and [0, n0T ] (where n0 is the sum of algebraic multiplic-
ities of distinct unstable eigenvalues of the Poincaré map).
It is also proved that a T -periodic controlled evolution equa-
tion is linear T -periodic feedback stabilizable if and only if
it is linear T -periodic feedback stabilizable with respect to a
finite-dimensional subspace. Some applications to heat equa-
tions with time-periodic potentials are presented.
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1. Introduction

1.1. The problem and the motivation

Consider the following controlled evolution equation:

y′(t) + Ay(t) + B(t)y(t) = D(t)u(t) in R+ � [0,∞). (1.1)

Here and throughout this paper, we make the following assumptions.

(H1) The operator (−A), with its domain D(−A), generates a C0 compact semigroup
{S(t)}t�0 in a real Hilbert space H (identified with its dual) with its norm and
inner product denoted by ‖ · ‖ and 〈·,·〉, respectively.

(H2) The operator-valued function B(·) ∈ L1
loc(R+;L(H)) is T -periodic, i.e., B(t+T ) =

B(t) for a.e. t ∈ R+, where T > 0 and L(H) denotes the space of all linear bounded
operators on H.

(H3) The operator-valued function D(·) ∈ L∞(R+;L(U,H)) is T -periodic. Here U is
also a real Hilbert space (identified with its dual) with its norm and inner product
denoted by ‖ · ‖U and 〈·,·〉U , respectively; and L(U,H) stands for the space of all
linear bounded operators from U to H. Controls u(·) are taken from the space
L2(R+;U).

For each h ∈ H, s � 0 and u(·) ∈ L2(R+;U), Eq. (1.1) (over [s,∞)) with the initial
condition that y(s) = h has a unique mild solution y(·; s, h, u) ∈ C([s,∞);H). (See, for
instance, Proposition 5.3 on page 66 in [13].) The following definitions about the periodic
feedback stabilization will be used throughout this paper:

• Eq. (1.1) is said to be linear periodic feedback stabilizable (LPFS, for short) if there
is a T -periodic K(·) ∈ L∞(R+;L(H,U)) such that the feedback equation

y′(t) + Ay(t) + B(t)y(t) = D(t)K(t)y(t) in R+ (1.2)

is exponentially stable, i.e., there are two positive constants M and δ such that
for each h ∈ H, the solution yK(·; 0, h) to Eq. (1.2) with the initial condition that
y(0) = h satisfies that ‖yK(t; 0, h)‖ � Me−δt‖h‖ for all t � 0. Any such a K(·) is
called an LPFS law for Eq. (1.1).

• Eq. (1.1) is said to be LPFS with respect to a subspace Z of U if there is a T -periodic
K(·) ∈ L∞(R+;L(H,Z)) such that Eq. (1.2) is exponentially stable. Any such a K(·)
is called an LPFS law for Eq. (1.1) with respect to Z.

Let

UFS �
{
Z
∣∣ Z is a subspace of U s.t. Eq. (1.1) is LPFS w.r.t. Z

}
. (1.3)
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