

Gaussian bounds for higher-order elliptic differential operators with Kato type potentials

Qingquan Deng^a, Yong Ding^b, Xiaohua Yao^{a,*}

 ^a Department of Mathematics, Central China Normal University, Wuhan 430079, China
^b School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems (BNU), Ministry of Education, Beijing Normal University, Beijing 100875, China

ARTICLE INFO

Article history: Received 1 September 2013 Accepted 11 February 2014 Available online 28 February 2014 Communicated by B. Schlein

Keywords: Schrödinger operator Gaussian kernel estimates Kato potential Spectral independence

ABSTRACT

Let P(D) be a nonnegative homogeneous elliptic operator of order 2m with real constant coefficients on \mathbb{R}^n and V be a suitable real measurable function. In this paper, we are mainly devoted to establish the Gaussian upper bound for Schrödinger type semigroup e^{-tH} generated by H = P(D) + Vwith Kato type perturbing potential V, which naturally generalizes the classical result for Schrödinger semigroup $e^{-t(\Delta+V)}$ as $V \in K_2(\mathbb{R}^n)$, the famous Kato potential class. Our proof significantly depends on the analyticity of the free semigroup $e^{-tP(D)}$ on $L^1(\mathbb{R}^n)$. As a consequence of the Gaussian upper bound, the L^p -spectral independence of H is concluded.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $m \ge 1$, P(D) be a nonnegative homogeneous elliptic operator of order 2mon $L^2(\mathbb{R}^n)$ with real constant coefficients, V be a measurable function on \mathbb{R}^n and V_{\pm} denote the positive and negative parts of V. If V_{-} satisfies the following small form perturbation:

^{*} Corresponding author.

E-mail addresses: dengq@mail.ccnu.edu.cn (Q. Deng), dingy@bnu.edu.cn (Y. Ding), yaoxiaohua@mail.ccnu.edu.cn (X. Yao).

Q. Deng et al. / Journal of Functional Analysis 266 (2014) 5377-5397

$$\int V_{-}|f|^{2} dx \leqslant \epsilon \int \left(P(D)f\right)\overline{f} dx + C_{\epsilon} \int |f|^{2} dx, \quad f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \tag{1.1}$$

for some $0 < \epsilon < 1$ and $C_{\epsilon} > 0$, then we can define a semibounded self-adjoint operator H := P(D) + V by the following closed form sum

$$Q(f) := \int \left(P(D)f \right) \overline{f} \, dx + \int V |f|^2 \, dx, \tag{1.2}$$

where $f \in W^{m,2}(\mathbb{R}^n)$ such that $\int V_+ |f|^2 dx < \infty$ ($W^{m,2}(\mathbb{R}^n)$ denotes the Sobolev space). Thus it follows that the self-adjoint operator H generates a semigroup e^{-tH} on $L^2(\mathbb{R}^n)$, which clearly admits a distributional kernel $K(t, x, y) \in \mathfrak{D}'(\mathbb{R}^n \times \mathbb{R}^n)$ for each t > 0 by Schwartz kernel theorem (see e.g. Hörmander [21, Chapter 5]).

It is of great interest to see if the heat kernel K(t, x, y) of the semigroup e^{-tH} has Gaussian point-wise estimates which are very useful to the spectral theory of H, Riesz transforms and Hardy space theory associated to H (for instance, see [1,5,8,13,15,17,25] and references therein for more interesting works). As concerned with H = P(D) + V, if n < 2m and the condition (1.1) is satisfied, then there exist constants $C, c, \omega > 0$ such that the kernel K(t, x, y) satisfies the following Gaussian estimate (e.g. see Davies [10], Barbatis and Davies [4])

$$\left| K(t,x,y) \right| \leqslant C t^{-\frac{n}{2m}} \exp\left\{ -c \frac{|x-y|^{2m/(2m-1)}}{t^{1/(2m-1)}} + \omega t \right\},\tag{1.3}$$

which obviously implies that the semigroup e^{-tH} on $L^2(\mathbb{R}^n)$ can be extended to a strongly continuous semigroup on $L^p(\mathbb{R}^n)$ for all $1 \leq p < \infty$ and also bounded on $L^{\infty}(\mathbb{R}^n)$. In particular, one can choose $\omega = 0$ in (1.3) if $V \ge 0$. Moreover, when n < 2m, $H = (-\Delta)^m + V$ and $0 \leq V \in L^1_{loc}(\mathbb{R}^n)$, the following sharp point-wise estimate holds (for instance, see [2-4,14]):

$$\left| K(t,x,y) \right| \leqslant C_r t^{-\frac{n}{2m}} \exp\left\{ -d_m \frac{|x-y|^{2m/(2m-1)}}{rt^{1/(2m-1)}} \right\},\tag{1.4}$$

where $C_r > 0$ for all r > 1 and

$$d_m = (2m-1)(2m)^{-\frac{2m}{2m-1}} \sin \frac{\pi}{4m-2},$$

which is also the sharp kernel estimates of the $e^{-t(-\Delta)^m}$ for n < 2m.

However, if n > 2m and no other conditions besides (1.1) are imposed on V, then generally, this kind of Gaussian estimate (1.3) may fail, and the semigroup e^{-tH} has only a partial L^p -theory where p belongs to some bounded interval around 2 (for example, see [6,10,11,28,29]). More specifically, for a class of more general second order elliptic operators with the condition (1.1) (including Schrödinger operator $-\Delta + V$), Liskevich, Sobol and Vogt [29] proved that there exists a maximal bounded interval (p_{\min}, p_{\max})

5378

Download English Version:

https://daneshyari.com/en/article/4590166

Download Persian Version:

https://daneshyari.com/article/4590166

Daneshyari.com