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In this paper we study the fiber dimension of invariant sub-
spaces for a large class of operators. We define a class of
invariant subspaces called CF subspaces which are related to
the codimension-one property. We obtain several character-
izations of CF subspaces, including one in terms of Samuel
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multiplicity.
Other new findings include: (1) a lattice-additive formula and
its applications (Section 4); (2) a new concept of “absorbance”
which describes a rough containment relation for invariant
subspaces (Section 5); (3) the existence of a unique, smallest
CF subspace containing an arbitrary invariant subspace and
preserving the fiber dimension (Section 6).
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1. Introduction to CF representations

For a given linear space M consisting of analytic, C"-valued functions (N € N) over
a domain {2 C C, the fiber dimension of M is defined by

fd(M) = ilelgdim/\/l()\), (1)

where the fiber space M(A) at A is given by
M) = {f(\): feM}cC.

A point A in {2 is called a maximal point, or an m-point for short, for M if dim M () =
fd(M), and is called a degenerate point if dim M(X) < fd(M). It is not hard to see
that the collection of degenerate points forms a discrete subset in {2 whose Lebesgue
area measure is 0. The set of m-points and degenerate points of M will be denoted by
mp(M) and Z4,(M), respectively. The fiber dimension has proved to be a fruitful tool to
several problems in operator theory in recent years: To the notorious transitive algebra
problem [4], to the cellular indecomposable property [3], to multi-variable Fredholm
index [14], to Samuel multiplicity [10,11], to general structure of invariant subspaces [12],
etc.

In this paper we fix 2 to be an open, connected, and bounded subset in the complex
plane C. Moreover, for convenience, we assume 0 € 2. We also fix n, N € N. We denote
by A, (£2) the collection of analytic operators which are defined to be the adjoints of
operators in the Cowen—Douglas class B, (£2*) [5], where 2* = {Z: z € 2}. By well
known constructions in operator theory [6,21], any T' € A, ({2) can be represented (in
the sense of unitary equivalence) as the coordinate multiplication operator M, on a
Hilbert space H satisfying the following:

(1.1) H consists of CV-valued analytic functions over the domain {2;

(1.2) The evaluation functional at \: f € H — f(A\) € C¥ is a continuous map from H
to CN for each \ € £2;

(1.3) If f € H, then so is zf, where z is the coordinate function; moreover, the multi-
plication operator M,_) is bounded below for each A € {2;

(1.4) H satisfies the condition cod(H) = fd(H), where cod(H) = dim(H © zH).
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