

Contents lists available at ScienceDirect

Journal of Functional Analysis

Fiber dimension for invariant subspaces

Li Chen^a, Guozheng Cheng^{b,*}, Xiang Fang^c

- ^a Department of Mathematics, Tianjin University, Tianjin, China
- ^b School of Mathematics, Wenzhou University, Wenzhou, Zhejiang, China
- ^c Department of Mathematics, National Central University, Chung-Li, Taiwan, ROC

ARTICLE INFO

Article history: Received 2 July 2014 Accepted 25 January 2015 Available online 4 February 2015 Communicated by S. Vaes

MSC: 47A53 47A15

Keywords: Analytic operator Samuel multiplicity Fiber dimension Invariant subspace

ABSTRACT

In this paper we study the fiber dimension of invariant subspaces for a large class of operators. We define a class of invariant subspaces called CF subspaces which are related to the codimension-one property. We obtain several characterizations of CF subspaces, including one in terms of Samuel multiplicity.

Other new findings include: (1) a lattice-additive formula and its applications (Section 4); (2) a new concept of "absorbance" which describes a rough containment relation for invariant subspaces (Section 5); (3) the existence of a unique, smallest CF subspace containing an arbitrary invariant subspace and preserving the fiber dimension (Section 6).

© 2015 Elsevier Inc. All rights reserved.

Contents

1.	Introduction to CF representations			
2.	Two intrinsic definitions			
	2.1. Definition via asymptotic formula	2625		
	2.2. Definition via sheaf model	2626		
	2.3. Fiber dimension range	2629		
3.	Characterization via Samuel multiplicity	2630		

E-mail addresses: lchencz@tju.edu.cn (L. Chen), chgzh09@gmail.com (G. Cheng), xfang@math.ncu.edu.tw (X. Fang).

^{*} Corresponding author.

4.	A latt	cice formula and its applications	2632
	4.1.	The equality for fiber dimension	2633
	4.2.	The equality for codimension	2633
	4.3.	Proof of Theorem 21	2636
5.	Absor	bance: a rough containment relation	2638
6.	CF en	velopes	2641
Ackno	wledgi	ments	2646
Refere	nces .		2646

1. Introduction to CF representations

For a given linear space \mathcal{M} consisting of analytic, \mathbb{C}^N -valued functions $(N \in \mathbb{N})$ over a domain $\Omega \subseteq \mathbb{C}$, the *fiber dimension* of \mathcal{M} is defined by

$$fd(\mathcal{M}) = \sup_{\lambda \in \Omega} \dim \mathcal{M}(\lambda), \tag{1}$$

where the fiber space $\mathcal{M}(\lambda)$ at λ is given by

$$\mathcal{M}(\lambda) = \{ f(\lambda) \colon f \in \mathcal{M} \} \subseteq \mathbb{C}^N.$$

A point λ in Ω is called a maximal point, or an m-point for short, for \mathcal{M} if dim $\mathcal{M}(\lambda) = \mathrm{fd}(\mathcal{M})$, and is called a degenerate point if dim $\mathcal{M}(\lambda) < \mathrm{fd}(\mathcal{M})$. It is not hard to see that the collection of degenerate points forms a discrete subset in Ω whose Lebesgue area measure is 0. The set of m-points and degenerate points of \mathcal{M} will be denoted by $\mathrm{mp}(\mathcal{M})$ and $\mathcal{Z}_{dg}(\mathcal{M})$, respectively. The fiber dimension has proved to be a fruitful tool to several problems in operator theory in recent years: To the notorious transitive algebra problem [4], to the cellular indecomposable property [3], to multi-variable Fredholm index [14], to Samuel multiplicity [10,11], to general structure of invariant subspaces [12], etc.

In this paper we fix Ω to be an open, connected, and bounded subset in the complex plane \mathbb{C} . Moreover, for convenience, we assume $0 \in \Omega$. We also fix $n, N \in \mathbb{N}$. We denote by $\mathcal{A}_n(\Omega)$ the collection of analytic operators which are defined to be the adjoints of operators in the Cowen–Douglas class $\mathcal{B}_n(\Omega^*)$ [5], where $\Omega^* = \{\bar{z}: z \in \Omega\}$. By well known constructions in operator theory [6,21], any $T \in \mathcal{A}_n(\Omega)$ can be represented (in the sense of unitary equivalence) as the coordinate multiplication operator M_z on a Hilbert space H satisfying the following:

- (1.1) H consists of \mathbb{C}^N -valued analytic functions over the domain Ω ;
- (1.2) The evaluation functional at λ : $f \in H \to f(\lambda) \in \mathbb{C}^N$ is a continuous map from H to \mathbb{C}^N for each $\lambda \in \Omega$:
- (1.3) If $f \in H$, then so is zf, where z is the coordinate function; moreover, the multiplication operator $M_{z-\lambda}$ is bounded below for each $\lambda \in \Omega$;
- (1.4) H satisfies the condition cod(H) = fd(H), where $cod(H) = dim(H \ominus zH)$.

Download English Version:

https://daneshyari.com/en/article/4590177

Download Persian Version:

https://daneshyari.com/article/4590177

<u>Daneshyari.com</u>