

Contents lists available at ScienceDirect

Journal of Functional Analysis

The Higson–Roe exact sequence and ℓ^2 eta invariants

Moulay-Tahar Benameur a,*, Indrava Roy b

^a I3M, UMR 5149 du CNRS, Montpellier, France
 ^b Sapienza Universita di Roma, Italy

ARTICLE INFO

Article history: Received 11 October 2014 Accepted 13 November 2014 Available online 2 December 2014 Communicated by S. Vaes

Keywords:
Operator algebra
Baum-Connes conjecture ℓ^2 eta invariant

ABSTRACT

The goal of this paper is to solve the problem of existence of an ℓ^2 relative eta morphism on the Higson–Roe structure group. Using the Cheeger–Gromov ℓ^2 eta invariant, we construct a group morphism from the Higson–Roe maximal structure group constructed in [35] to the reals. When we apply this morphism to the structure class associated with the spin Dirac operator for a metric of positive scalar curvature, we get the spin ℓ^2 rho invariant. When we apply this morphism to the structure class associated with an oriented homotopy equivalence, we get the difference of the ℓ^2 rho invariants of the corresponding signature operators. We thus get new proofs for the classical ℓ^2 rigidity theorems of Keswani obtained in [41].
© 2014 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	975		
2.	Background on Hilbert modules for coverings			
3.	ℓ^2 structure algebras			
	3.1. Review of the Higson–Roe sequence	984		
	3.2. ℓ^2 analytic structure group	988		
	3.3. Compatibility of the exact sequences	992		
4.	Geometric structures and eta invariants	995		

^{*} Corresponding author.

E-mail addresses: moulay.benameur@univ-montp2.fr (M.-T. Benameur), indrava@gmail.com (I. Roy).

	4.1.	Review of eta invariants and APS formulae	995	
	4.2.	The geometric ℓ^2 structure group	997	
	4.3.	Geometric versus analytic	1000	
5.	Cheege	er–Gromov invariant as a structure morphism	1009	
6.	Some of	corollaries	1011	
	6.1.	PSC and vanishing of the ℓ^2 rho invariant	1011	
	6.2.	Homotopy invariance of the Cheeger–Gromov rho	1012	
Acknowledgments				
Apper	ndix A.	K -theory of Γ -compact operators	1019	
Apper	ndix B.	au-Compactness of resolvent	1021	
Apper	ndix C.	Some results on BVP on coverings	1023	
Refere	ences .		1029	

1. Introduction

The eta invariant of elliptic operators first appeared in [3] as a boundary correction term appearing in the calculation of the index of a Fredholm operator associated with a global boundary value problem on even dimensional manifolds with boundary. The eta invariant $\eta(D)$ is a measure of asymmetry of the spectrum of the operator D and turns out to be well-defined for any elliptic self-adjoint differential operators D on a closed odd dimensional manifold M. This is a sensitive invariant, but there is a relative version which is more stable and often has interesting topological properties. More precisely, given two group morphisms $\sigma_1, \sigma_2 : \pi_1(M) \to U(N)$ and the associated flat bundles E_{σ_i} , we may form the twisted elliptic differential operators $D \otimes E_{\sigma_i}$ and the relative eta invariant is by definition [4,5]

$$\rho_{\sigma_1,\sigma_2}(D) := \eta(D \otimes E_{\sigma_1}) - \eta(D \otimes E_{\sigma_2}).$$

If D is for instance the signature operator on M then it was proved by Atiyah, Patodi and Singer that $\rho_{\sigma_1,\sigma_2}(D)$ is a differential invariant of M. This property had important consequences, as when $\pi_1(M)$ has torsion this invariant is not a homotopy invariant, see for instance [20,21,45,49,57]. Notice that the relative index is zero thanks to the Atiyah–Singer index formula and the relative eta invariant can thus be seen as a refined secondary invariant, in fact some transgression of the index [23,44]. In general, when reduced modulo \mathbb{Z} , this invariant becomes more computable and inherits topological properties, there is indeed a topological index formula in \mathbb{R}/\mathbb{Z} which expresses it in terms of characteristic classes [5].

In [22], Cheeger and Gromov extended the APS eta invariant and introduced an ℓ^2 version of the eta invariant exactly as Atiyah introduced an ℓ^2 version of the index. More precisely, given a Galois Γ -covering $\widetilde{M} \to M$ and a Γ -invariant generalized Dirac operator \widetilde{D} over \widetilde{M} , the Cheeger–Gromov eta invariant is defined by the absolutely convergent integral [22]:

Download English Version:

https://daneshyari.com/en/article/4590193

Download Persian Version:

https://daneshyari.com/article/4590193

<u>Daneshyari.com</u>