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The goal of this paper is to solve the problem of existence of an
£2 relative eta morphism on the Higson—Roe structure group.
Using the Cheeger-Gromov ¢2 eta invariant, we construct
a group morphism from the Higson—-Roe maximal structure
group constructed in [35] to the reals. When we apply this
morphism to the structure class associated with the spin
Dirac operator for a metric of positive scalar curvature, we
get the spin £2 rho invariant. When we apply this morphism
to the structure class associated with an oriented homotopy
equivalence, we get the difference of the £ rho invariants of the
corresponding signature operators. We thus get new proofs for
the classical 2 rigidity theorems of Keswani obtained in [41].
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1. Introduction

The eta invariant of elliptic operators first appeared in [3] as a boundary correction
term appearing in the calculation of the index of a Fredholm operator associated with a
global boundary value problem on even dimensional manifolds with boundary. The eta
invariant n(D) is a measure of asymmetry of the spectrum of the operator D and turns
out to be well-defined for any elliptic self-adjoint differential operators D on a closed
odd dimensional manifold M. This is a sensitive invariant, but there is a relative version
which is more stable and often has interesting topological properties. More precisely,
given two group morphisms 01,09 : (M) — U(N) and the associated flat bundles
E,,, we may form the twisted elliptic differential operators D @ E,, and the relative eta
invariant is by definition [4,5]

p01702(D> = U(D®E01) - 77(D ®E02)~

If D is for instance the signature operator on M then it was proved by Atiyah, Patodi
and Singer that ps, »,(D) is a differential invariant of M. This property had important
consequences, as when 71 (M) has torsion this invariant is not a homotopy invariant,
see for instance [20,21,45,49,57]. Notice that the relative index is zero thanks to the
Atiyah—Singer index formula and the relative eta invariant can thus be seen as a refined
secondary invariant, in fact some transgression of the index [23,44]. In general, when
reduced modulo Z, this invariant becomes more computable and inherits topological
properties, there is indeed a topological index formula in R/Z which expresses it in
terms of characteristic classes [5].

In [22], Cheeger and Gromov extended the APS eta invariant and introduced an ¢2
version of the eta invariant exactly as Atiyah introduced an ¢ version of the index.
More precmely, given a Galois I'-covering M — M and a I-invariant generalized Dirac
operator D over M the Cheeger—Gromov eta invariant is defined by the absolutely
convergent integral [22]:



Download English Version:

https://daneshyari.com/en/article/4590193

Download Persian Version:

https://daneshyari.com/article/4590193

Daneshyari.com


https://daneshyari.com/en/article/4590193
https://daneshyari.com/article/4590193
https://daneshyari.com

