

Contents lists available at ScienceDirect

### Journal of Functional Analysis



www.elsevier.com/locate/jfa

## Isoperimetric inequality for radial probability measures on Euclidean spaces

Asuka Takatsu<sup>1</sup>

Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan

#### ARTICLE INFO

Article history: Received 15 January 2013 Accepted 24 January 2014 Available online 4 February 2014 Communicated by Cédric Villani

*Keywords:* Poincaré limit Isoperimetric inequality

#### ABSTRACT

We generalize the Poincaré limit which asserts that the n-dimensional Gaussian measure is approximated by the projections of the uniform probability measure on the Euclidean sphere of appropriate radius to the first n-coordinates as the dimension diverges to infinity. The generalization is done by replacing the projections with certain maps. Using this generalization, we derive a Gaussian isoperimetric inequality for an absolutely continuous probability measure on Euclidean spaces with respect to the Lebesgue measure, whose density is a radial function.

@ 2014 Elsevier Inc. All rights reserved.

#### 1. Introduction

The isoperimetric profile of a Borel probability measure  $\mu$  on  $\mathbb{R}^n$  describes a relation between the volume  $\mu[A]$  and the *boundary measure*  $\mu^+[A] := \underline{\lim}_{\varepsilon \downarrow 0} (\mu[A^{\varepsilon}] - \mu[A])/\varepsilon$  of  $A \subset \mathbb{R}^n$ , where  $A^{\varepsilon} := \{x \in \mathbb{R}^n \mid \inf_{a \in A} |x - a| < \varepsilon\}$  denotes the  $\varepsilon$ -neighborhood of Awith respect to the standard Euclidean norm  $|\cdot|$ . Throughout this note, any subset of  $\mathbb{R}^n$  is assumed to be Borel. Precisely, the *isoperimetric profile*  $I[\mu]$  of  $\mu$  is a function on [0, 1] defined by

 $I[\mu](a) := \inf \{ \mu^+[A] \mid A \subset \mathbb{R}^n \text{ with } \mu[A] = a \}.$ 

0022-1236/\$ – see front matter © 2014 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jfa.2014.01.014

E-mail address: takatsu@math.nagoya-u.ac.jp.

<sup>&</sup>lt;sup>1</sup> Supported in part by the Grant-in-Aid for Young Scientists (B) 24740042.

Let  $A_n$  denote the boundary measure of the unit ball in  $\mathbb{R}^n$  with respect to the Lebesgue measure. For a measurable, nonnegative function f on  $(0, \infty)$  satisfying

$$M_n^f := A_n \int_0^\infty f(r) r^{n-1} \, dr < \infty,$$

define the *n*-dimensional radial probability measure  $\mu_n^f$  with density f as the absolutely continuous probability measure on  $\mathbb{R}^n$  with density

$$\frac{d\mu_n^f}{dx}(x) = \frac{1}{M_n^f} f\big(|x|\big)$$

with respect to the Lebesgue measure. For example, the *n*-dimensional Gaussian measure  $\gamma_n$  is the radial probability measure with density  $g(r) := \exp(-r^2/2)$ , and its isoperimetric profile was provided by Borell [3] and Sudakov and Tsirel'son [6] independently of the form

$$I[\gamma_n](a) = I[\gamma_1](a) = G'(G^{-1}(a)), \qquad G(r) := \int_{-\infty}^{r} (2\pi)^{-1/2} g(s) \, ds = \gamma_1 \big[ (-\infty, r] \big],$$

where the infimum in the definition of  $I[\gamma_n](a)$  is attained by the hyperplane of the form

$$H_a := \{ x \in \mathbb{R}^n \mid x_1 < G^{-1}(a) \}.$$

The proof relies on the approximation procedure, so-called Poincaré limit: let  $S_N$  be the (N-1)-dimensional Euclidean sphere of radius  $N^{1/2}$  and  $v_N$  be the uniform probability measure on  $S_N$ . We consider the orthogonal projection from  $\mathbb{R}^N$  to the first *n*-coordinates, and denote by  $P_{n,N}$  the restriction of it on  $S_N$ . Then  $\gamma_n$  is obtained as the weak limit of  $P_{n,N\sharp}v_N$  as  $N \to \infty$ , where  $P_{n,N\sharp}v_N$  denotes the push-forward measure of  $v_N$  by  $P_{n,N}$ , namely  $P_{n,N\sharp}v_N[A] = v_N[(P_{n,N})^{-1}(A)]$  for any  $A \subset \mathbb{R}^n$ .

The aim of this note is to derive a Gaussian isoperimetric inequality for  $\mu_n^f$ , that is, estimate  $I[\mu_n^f]$  below by  $I[\gamma_1]$ . To do this, let us generalize the Poincaré limit by replacing  $P_{n,N}$  with  $P_{n,N}^{\rho} := s_n^{\rho} \circ P_{n,N}$ , where  $s_n^{\rho}$  is the map on  $\mathbb{R}^n$  defined as

$$s_n^{\rho}(x) := \begin{cases} \rho(|x|)x & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

for a function  $\rho$  on  $(0, \infty)$  satisfying the following condition.

(C)  $\rho$  is  $C^1$ , positive in  $(0, \infty)$  and  $s_1^{\rho}$  is strictly increasing.

**Theorem 1.1.** For a function  $\rho$  satisfying (C), let  $\sigma$  be the inverse function of  $s_1^{\rho}$ . For any  $x \in \mathbb{R}^n \setminus \{0\}, \{f_{n,N}^{\rho}(x) := d(P_{n,N\sharp}^{\rho}v_N)(x)/dx\}_{N \in \mathbb{N}}$  converges to

3436

Download English Version:

# https://daneshyari.com/en/article/4590217

Download Persian Version:

https://daneshyari.com/article/4590217

Daneshyari.com