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Let X be a sequence space and denote by Z(X) the subset
of X formed by sequences having only a finite number of
zero coordinates. We study algebraic properties of Z(X) and
show (among other results) that (for p ∈ [1,∞]) Z(�p) does
not contain infinite dimensional closed subspaces. This solves
an open question originally posed by R.M. Aron and V.I.
Gurariy in 2003 on the linear structure of Z(�∞). In addition
to this, we also give a thorough analysis of the existing
algebraic structures within the sets Z(X) and X \ Z(X) and
their algebraic genericities.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

During a Non-linear Analysis Seminar at Kent State University (Kent, Ohio, USA)
in 2003, Richard M. Aron and Vladimir I. Gurariy posed the following question:

Question 1.1 (R. Aron and V. Gurariy, 2003). Is there an infinite dimensional closed
subspace of �∞ every nonzero element of which has only a finite number of zero coordi-
nates?
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Using modern terminology (originally coined by V. Gurariy himself), a subset M of
a topological vector space X is called lineable (resp. spaceable) in X if there exists an
infinite dimensional linear space (resp. an infinite dimensional closed linear space) Y ⊂
M ∪ {0} (see [1,9,13,16]). V. Gurariy also coined the notion of algebrability (introduced
in [2]) meaning that, given a Banach algebra A and a subset B ⊂ A, it is said that B is
algebrable if there exists a subalgebra C of A so that C ⊂ B ∪ {0} and the cardinality of
any system of generators of C is infinite.

Throughout this paper, and if X denotes a sequence space, we shall denote by Z(X)
the subset of X formed by sequences having only a finite number of zero coordinates.
Therefore, the above question can be stated in terms of lineability and spaceability:

Is Z(�∞) spaceable in �∞?

Lately, these concepts of lineability and spaceability have proven to be quite fruitful
and have attracted the interest of many mathematicians, among whom we have R. Aron,
F. Bastin, L. Bernal-González, P. Enflo, G. Godefroy, V. Fonf, V. Gurariy, V. Kadets, or
E. Teixeira (see, e.g. [3–6,9–11,13,20]). Question 1.1 has also appeared in several recent
works (see, e.g., [9,13,14,19]) and, for the last decade, there have been several attempts
to partially answer it, although nothing conclusive in relation to the original problem
has been obtained so far.

This paper is arranged as follows. Section 2 shall focus on the algebrability (and,
thus, lineability) of the set Z(X) for X ∈ {c0, �p}, p ∈ [1,∞]. Sections 3 and 4 will show
that spaceability of Z(X) is actually not possible for any of the previous Banach spaces
whereas, in Section 5, we shall show that V \Z(V ) is, actually, spaceable (and algebrable)
for every infinite dimensional closed subspace (subalgebra) V of X (for X ∈ {c0, �p},
p ∈ [1,∞]).

There are not many examples of (nontrivial) sets that are lineable and not spaceable.
One of the first ones in this direction, is due to B. Levine and D. Milman (1940, [18]) who
showed that the subset of C[0, 1] of all functions of bounded variation is not spaceable
(it is obviously lineable, since it is an infinite dimensional linear space itself). A more
recent one is due to V. Gurariy (1966, [15]), who showed that the set of everywhere
differentiable functions on [0, 1] (which is also an infinite dimensional linear space) is not
spaceable in C([0, 1]). However, L. Bernal-González [7] showed that C∞(]0, 1[) is, actually,
spaceable in C(]0, 1[).

Here, we shall provide (among other results) the definitive answer to Question 1.1.
Namely, if X stands for c0, or �p, with p ∈ [1,∞], we prove the following:

(i) Z(X) is maximal algebrable and maximal lineable [8], that is, Z(X)∪ {0} contains
an algebra with a system of generators of cardinality dim(X) and a linear subspace
of dimension dim(X) (Proposition 2.1).

(ii) Z(X) is not spaceable, that is, every closed subspace of Z(X)∪{0} must have finite
dimension (Corollaries 3.4 and 4.8).
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