

Contents lists available at ScienceDirect

## Journal of Functional Analysis



www.elsevier.com/locate/jfa

# Partially harmonic forms and models of H-series

## Meng-Kiat Chuah

Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan

#### ARTICLE INFO

Article history: Received 3 March 2012 Accepted 13 December 2013 Available online 3 January 2014 Communicated by P. Delorme

Keywords: Reductive Lie group H-series Geometric quantization Partially harmonic form Moment map

#### ABSTRACT

Let G be a real reductive Lie group, let H = TA be the identity component of a Cartan subgroup, and let  $\mathfrak{h}$  be the corresponding Cartan subalgebra. This leads to a parabolic subgroup of G whose identity component is MAN. The unitary G-representations induced by MAN are known as the H-series. We study symplectic geometry of  $G \times \mathfrak{h}$  and apply geometric quantization to construct unitary G-representations by partially harmonic forms. They are direct integrals of the H-series, indexed by the image of the moment map. We also perform symplectic reduction and symplectic induction, and consider their analogues in representation theory via geometric quantization.

© 2013 Elsevier Inc. All rights reserved.

### 1. Introduction

Let G be a connected real reductive Lie group, let H be the identity component of a Cartan subgroup, and let  $\mathfrak{h}$  be its Lie algebra. Let

$$X = G \times \mathfrak{h}.$$

We shall perform geometric quantization [14] to symplectic forms  $\omega$  on X and construct unitary G-representations  $\mathcal{H}(X,\omega)$ . We show that  $\mathcal{H}(X,\omega)$  is a direct integral of the H-series defined by Wolf [20,21], indexed by the image of the moment map of  $\omega$ . According to Gelfand and Zelevinski [7], if G is compact, a model is a unitary G-representation

E-mail address: chuah@math.nthu.edu.tw.

<sup>0022-1236/\$ –</sup> see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jfa.2013.12.013

on a Hilbert space in which every irreducible occurs once. In [2], we use  $\mathcal{H}(X,\omega)$  to construct a model of G. For noncompact G, the definition of model can be generalized so that it consists of certain series of representations. In [3] (resp. [5]), we construct a model of discrete series (resp. principal series) when  $\mathfrak{h}$  is a compact (resp. split) Cartan subalgebra. This article constructs a model of H-series for general  $\mathfrak{h}$ . Geometric quantization enables us to compare certain processes in symplectic geometry with their analogues in representation theory. We show that symplectic reduction [15] on  $(X, \omega)$  corresponds to a direct integrand of  $\mathcal{H}(X, \omega)$ . We also introduce symplectic induction, which corresponds to induced representation. We now describe these projects in more details.

For convenience, we always assume that G is of Harish-Chandra class, namely its semisimple part (G, G) has finite center [13, Ch. VII-2]. Write H = TA, where T is a compact torus and A is diffeomorphic to the Euclidean space. The lower case Gothic letters always denote the Lie algebras, and subscript  $\mathbb{C}$  always denotes complexification. For example  $\mathfrak{h} = \mathfrak{t} + \mathfrak{a}$  and  $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} + i\mathfrak{g}$ . Let MA be the identity component of the centralizer of A in G. By a choice of positive  $\mathfrak{a}$ -roots, we obtain the nilpotent subgroup N corresponding to the positive root spaces. Then MAN is the identity component of a parabolic subgroup of G. Since M has compact Cartan subgroup T, it has nonempty discrete series  $\widehat{M}_{d.s.}$  [11]. Let  $\Theta \in \widehat{M}_{d.s.}$  and  $\nu \in \widehat{A}$ . The H-series representation is

$$\operatorname{Ind}_{MAN}^G(\Theta \otimes \nu \otimes 1).$$

By the way, in [20,21], H is a Cartan subgroup of G, and MA is the centralizer of A in G; whereas our H and M are their identity components. So the resulting H-series differ slightly.

The left and right G-actions on G extend naturally to left and right G-actions on X by fixing  $\mathfrak{h}$ . There is also a right  $\mathfrak{h}$ -action on X, given by translation on the  $\mathfrak{h}$ -component of X. We call them the left action L of G and right action R of  $G \times \mathfrak{h}$  on X, written as  $G \times (G \times \mathfrak{h})$ -actions.

In Section 2, we study the partially complex geometry of  $G/N \times \mathfrak{h}$  and G/HN. These spaces are fibrations over B = G/MAN, and a choice of positive root system  $\Delta^+(\mathfrak{m}, \mathfrak{t})$ endows their fibers with canonical complex structures. We use these complex fibers to construct the partial Dolbeault differential forms  $\Omega_B^q$  in (2.11). The Dolbeault operator  $\bar{\partial}$  acts on  $\Omega_B^{\bullet}$  to form a cochain complex. If in addition  $\Omega_B^{\bullet}$  has an  $L^2$ -structure, let  $\bar{\partial}^*$ be the formal adjoint on the square-integrable elements. By taking ker  $\bar{\partial} \cap \ker \bar{\partial}^*$  followed by Hilbert space completion, we obtain the partially harmonic forms  $\mathcal{H}_B^q$ .

Let  $\Delta(\mathfrak{g},\mathfrak{h})$  and  $\Delta(\mathfrak{m},\mathfrak{t})$  denote the roots of  $(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$  and  $(\mathfrak{m}_{\mathbb{C}},\mathfrak{t}_{\mathbb{C}})$  respectively. Let  $\mathfrak{z}$  be the center of  $\mathfrak{g}$ . Define the regular elements

$$\begin{aligned} &\mathfrak{h}_{\mathrm{reg}} = \left\{ v \in \mathfrak{h}; \, \alpha(v) \neq 0 \text{ for all } \alpha \in \Delta(\mathfrak{g}, \mathfrak{h}) \right\} + \mathfrak{z}, \\ &\mathfrak{t}_{\mathrm{reg}} = \left\{ v \in \mathfrak{t}; \, \alpha(v) \neq 0 \text{ for all } \alpha \in \Delta(\mathfrak{m}, \mathfrak{t}) \right\} + (\mathfrak{z} \cap \mathfrak{t}). \end{aligned}$$
(1.1)

If  $u + v \in \mathfrak{h}_{reg}$  where  $u \in \mathfrak{t}$  and  $v \in \mathfrak{a}$ , then  $u \in \mathfrak{t}_{reg}$ .

Download English Version:

https://daneshyari.com/en/article/4590253

Download Persian Version:

https://daneshyari.com/article/4590253

Daneshyari.com