Asymptotic expansions for trace functionals

Anna Skripka ${ }^{1}$
Department of Mathematics and Statistics, University of New Mexico, 400 Yale Blvd NE, MSC01 1115, Albuquerque, NM 87131, USA

A R T I C L E I N F O

Article history:

Received 16 January 2013
Accepted 21 December 2013
Available online 9 January 2014
Communicated by Alain Connes

Keywords:

Perturbation theory
Taylor approximation

A B S T R A C T
We obtain Taylor approximations for functionals $V \mapsto$
$\operatorname{Tr}\left(f\left(H_{0}+V\right)\right)$ defined on the bounded self-adjoint operators,
where H_{0} is a self-adjoint operator with compact resolvent and
f is a sufficiently nice scalar function, relaxing assumptions
on the operators made in [17], and derive estimates and
representations for the remainders of these approximations.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let H_{0} be an unbounded self-adjoint operator, V a bounded self-adjoint operator on a separable Hilbert space \mathcal{H}, f a sufficiently nice scalar function, and let $f\left(H_{0}+V\right)$ be defined by the standard functional calculus. The functionals $f \mapsto \operatorname{Tr}\left(f\left(H_{0}+V\right)\right)$ and $V \mapsto \operatorname{Tr}\left(f\left(H_{0}+V\right)\right)$ or their modifications have been involved in problems of perturbation theory (of, for instance, differential operators) and noncommutative geometry since as early as 1950 's (see, e.g., $[1,2,4,6,7,9,12,17]$). The latter functional in the context of noncommutative geometry is called the spectral (action) functional [6].

Assume that the resolvent of H_{0} belongs to some Schatten ideal (or, more generally, $\operatorname{Tr}\left(e^{-t H_{0}^{2}}\right)<\infty$, for any $\left.t>0\right),\|\delta(V)\|<\infty,\left\|\delta^{2}(V)\right\|<\infty$, where $\delta(\cdot)=\left[\left|H_{0}\right|, \cdot\right]$, and f is a sufficiently nice even function. Let $\left\{\mu_{k}\right\}_{k=1}^{\infty}$ be a sequence of eigenvalues

[^0]of H_{0} counting multiplicity and let $\left\{\psi_{k}\right\}_{k=1}^{\infty}$ be an orthonormal basis of the respective eigenvectors. The asymptotic expansion of the spectral action functional
\[

$$
\begin{align*}
\operatorname{Tr}\left(f\left(H_{0}+V\right)\right)= & \operatorname{Tr}\left(f\left(H_{0}\right)\right)+\sum_{p=1}^{\infty} \frac{1}{p} \sum_{i_{1}, \ldots, i_{p}}\left(f^{\prime}\right)^{[p-1]}\left(\mu_{i_{1}}, \ldots, \mu_{i_{p}}\right)\left\langle V \psi_{i_{1}}, \psi_{i_{2}}\right\rangle \ldots \\
& \times\left\langle V \psi_{i_{p-1}}, \psi_{i_{p}}\right\rangle\left\langle V \psi_{i_{p}}, \psi_{i_{1}}\right\rangle \tag{1.1}
\end{align*}
$$
\]

where $\left(f^{\prime}\right)^{[p-1]}$ is the divided difference of order $p-1$ of the function f^{\prime}, was derived in [17], extending the results of [9] for finite-dimensional operators. (The precise assumptions on H_{0}, V, and f can be found in [17, Theorem 18].)

In this paper, we obtain the asymptotic expansion (1.1) under relaxed assumptions on H_{0} and V and find bounds for the remainders of the respective approximations by taking a different approach to the problem. Specifically, we assume that $H_{0}=H_{0}^{*}$ has compact resolvent, $V=V^{*} \in \mathcal{B}(\mathcal{H})$ (where $\mathcal{B}(\mathcal{H})$ is the algebra of bounded linear operators on \mathcal{H}), and f is a sufficiently nice compactly supported function (but no summability restriction on H_{0} is made, H_{0} is not assumed to be positive, and f is not assumed to be even). Let

$$
\begin{align*}
R_{H_{0}, f, n}(V):= & \operatorname{Tr}\left(f\left(H_{0}+V\right)\right)-\operatorname{Tr}\left(f\left(H_{0}\right)\right) \\
& -\sum_{p=1}^{n-1} \frac{1}{p} \sum_{i_{1}, \ldots, i_{p}}\left(f^{\prime}\right)^{[p-1]}\left(\mu_{i_{1}}, \ldots, \mu_{i_{p}}\right)\left\langle V \psi_{i_{1}}, \psi_{i_{2}}\right\rangle \ldots \\
& \times\left\langle V \psi_{i_{p-1}}, \psi_{i_{p}}\right\rangle\left\langle V \psi_{i_{p}}, \psi_{i_{1}}\right\rangle . \tag{1.2}
\end{align*}
$$

In Theorem 3.4 and Corollary 3.5, we establish the bound

$$
\begin{equation*}
\left|R_{H_{0}, f, n}(V)\right|=\mathcal{O}\left(\|V\|^{n}\right) \tag{1.3}
\end{equation*}
$$

and find an explicit estimate for $\mathcal{O}\left(\|V\|^{n}\right)$ in Theorem 3.2 and Remark 3.3(i). (The case $n=1$ also follows from [1].) If, in addition, H_{0} has Hilbert-Schmidt resolvent, we refine the bound (1.3) of Theorem 3.4 in Theorem 3.8. In Theorem 3.10, we show that the functional $C_{c}^{3}(\mathbb{R}) \ni f^{\prime \prime} \mapsto R_{H_{0}, f, 2}(V)$ is given by a locally finite absolutely continuous measure. (An analogous result for the functional $f^{\prime} \mapsto R_{H_{0}, f, 1}(V)$ was obtained in [1].)

2. Preliminaries

The asymptotic expansion (1.1) can be rewritten as

$$
\begin{align*}
\operatorname{Tr}\left(f\left(H_{0}+V\right)\right)= & \operatorname{Tr}\left(f\left(H_{0}\right)\right)+\sum_{p=1}^{\infty} \frac{1}{p} \sum_{\lambda_{1}, \ldots, \lambda_{p} \in \operatorname{spec}(H)}\left(f^{\prime}\right)^{[p-1]}\left(\lambda_{1}, \ldots, \lambda_{p}\right) \\
& \times \operatorname{Tr}\left(E_{H_{0}}\left(\lambda_{1}\right) V \cdots V E_{H_{0}}\left(\lambda_{p}\right) V\right) \tag{2.1}
\end{align*}
$$

where $E_{H_{0}}$ is the spectral measure of $H_{0}=H_{0}^{*}$.

https://daneshyari.com/en/article/4590256

Download Persian Version:

https://daneshyari.com/article/4590256

Daneshyari.com

[^0]: E-mail address: skripka@math.unm.edu.
 ${ }^{1}$ Research supported in part by NSF grant DMS-1249186.

