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1. Introduction and main results
1.1. Sobolev inequalities in Lorentz spaces for a mean oscillation
The standard Sobolev inequality states that, if n > 2 and 1 < p < n, then
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for every u € WP(R"), where p* is the Sobolev conjugate number defined by p* =
np/(n —p) and Sy, , is the optimal constant for the inequality (1.1) given by
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The inequality (1.1) with the optimal constant was proved by Federer and Fleming [20]
and Maz’ya [30] for p = 1 and by Aubin [4] and Talenti [36] for 1 < p < n. The inequal-
ity (1.1) is also called a Sobolev embedding theorem since (1.1) implies the embedding

WhP(R") C L (R™). (1.2)

This embedding is known as the optimal embedding in the framework of Lebesgue spaces,
i.e. the smallest Lebesgue space which contains W1?(R") is LP (R™). More precisely,
(1.2) is the optimal embedding in the framework of Orlicz spaces, which is a natural
generalization of Lebesgue spaces (see [11]). However, Peetre [34] proved that the Sobolev
embedding (1.2) can be improved within the framework of Lorentz spaces (see also [38]).

Lorentz spaces are known as real interpolation spaces between Lebesgue spaces and
can be defined via the notion of Schwarz symmetrization. Let ¢ be a measurable function
on R™ whose level sets have finite measure for every level. Then the function

p(A) = [{z: |¢(x)] > A}, A=0,
is the distribution function of ¢ and
¢*(r) :==inf{\ > 0: p(\) < |B,|}

is radially symmetric and non-increasing rearrangement of ¢, where B, is the ball cen-
tered at the origin with radius r and |A| is the n-dimensional Lebesgue measure of
A C R™. We call the function ¢f(|z|), z € R™ as Schwarz symmetrization of ¢. Then, we
define Lorentz spaces LP-7(R"™) as

Lr1 (R") = {u: measurable in R"
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A sharpened version of the Sobolev inequality with the optimal constant states that,
ifn>2and 1< p<n,then
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