Bulk asymptotics for polyanalytic correlation kernels

Antti Haimi
Department of Mathematics, The Royal Institute of Technology, S-100 44 Stockholm, Sweden
Received 8 July 2013; accepted 19 November 2013
Available online 7 December 2013
Communicated by A. Borodin

Abstract

For a weight function $Q: \mathbb{C} \rightarrow \mathbb{R}$ and a positive scaling parameter m, we study reproducing kernels $K_{q, m Q, n}$ of the polynomial spaces $$
A_{q, m Q, n}^{2}:=\operatorname{span}_{\mathbb{C}}\left\{\bar{z}^{r} z^{j} \mid 0 \leqslant r \leqslant q-1,0 \leqslant j \leqslant n-1\right\}
$$ equipped with the inner product from the space $L^{2}\left(e^{-m Q(z)} \mathrm{d} A(z)\right)$. Here $\mathrm{d} A$ denotes a suitably normalized area measure on \mathbb{C}. For a point z_{0} belonging to the interior of certain compact set \mathcal{S} and satisfying $\Delta Q\left(z_{0}\right)>0$, we define the rescaled coordinates

$$
z=z_{0}+\frac{\xi}{\sqrt{m \Delta Q\left(z_{0}\right)}}, \quad w=z_{0}+\frac{\lambda}{\sqrt{m \Delta Q\left(z_{0}\right)}} .
$$

The following universality result is proved in the case $q=2$:

$$
\frac{1}{m \Delta Q\left(z_{0}\right)}\left|K_{q, m Q, n}(z, w)\right| e^{-\frac{1}{2} m Q(z)-\frac{1}{2} m Q(w)} \rightarrow\left|L_{q-1}^{1}\left(|\xi-\lambda|^{2}\right)\right| e^{-\frac{1}{2}|\xi-\lambda|^{2}}
$$

as $m, n \rightarrow \infty$ while $n \geqslant m-M$ for any fixed $M>0$, uniformly for (ξ, λ) in compact subsets of \mathbb{C}^{2}. The notation L_{q-1}^{1} stands for the associated Laguerre polynomial with parameter 1 and degree $q-1$. This generalizes a result of Ameur, Hedenmalm and Makarov concerning analytic polynomials to bianalytic polynomials. We also discuss how to generalize the result to $q>2$. Our methods include a simplification of a Bergman kernel expansion algorithm of Berman, Berndtsson and Sjöstrand in the one compex variable

[^0]setting, and extension to the context of polyanalytic functions. We also study off-diagonal behaviour of the kernels $K_{q, m Q, n}$.
© 2013 Elsevier Inc. All rights reserved.
Keywords: Polyanalytic function; Determinantal point process; Landau level; Bergman kernel

1. Introduction

1.1. Notation

We will write ∂X and $\operatorname{int}(X)$ for the boundary and the interior of a subset X of the complex plane \mathbb{C}. By 1_{X} we mean the characteristic function of the set X. We let

$$
\mathrm{d} A(z)=\pi^{-1} \mathrm{~d} x \mathrm{~d} y, \quad \text { where } z=x+\mathrm{i} y \in \mathbb{C}
$$

be the normalized area measure in \mathbb{C}, and use the standard Wirtinger derivatives

$$
\partial_{z}:=\frac{1}{2}\left(\partial_{x}-\mathrm{i} \partial_{y}\right), \quad \bar{\partial}_{z}:=\frac{1}{2}\left(\partial_{x}+\mathrm{i} \partial_{y}\right) .
$$

We will often omit the subscripts if there is no risk of confusion. We write $\Delta=\partial \bar{\partial}$, and it can be observed that this equals to one quarter of the usual Laplacian. We write \mathbb{D} for the open unit disk, and more generally $\mathbb{D}(z, r)$ for the disk with center z and radius r. Given a Lebesgue measurable function $w: \mathbb{C} \rightarrow \mathbb{R}$, we denote by $L^{2}(w)$ the space of measurable functions $\mathbb{C} \rightarrow \mathbb{C}$ which are square-integrable with respect to the measure $w(z) \mathrm{d} A(z)$.

1.2. Spaces of polyanalytic polynomials

Let $Q: \mathbb{C} \rightarrow \mathbb{R}$ be a continuous function satisfying

$$
\begin{equation*}
Q(z) \geqslant(1+\epsilon) \log |z|^{2}, \quad|z| \geqslant C \tag{1.1}
\end{equation*}
$$

for two positive numbers ϵ and C. This function will be referred to as the weight. We set

$$
\operatorname{Pol}_{q, n}:=\operatorname{span}_{\mathbb{C}}\left\{\bar{z}^{r} z^{j} \mid 0 \leqslant r \leqslant q-1,0 \leqslant j \leqslant n-1\right\},
$$

and

$$
A_{q, m Q, n}^{2}:=\operatorname{Pol}_{q, n} \cap L^{2}\left(e^{-m Q(z)}\right)
$$

The space $A_{q, m Q, n}^{2}$ is a finite dimensional, and thus closed, subspace of $L^{2}\left(e^{-m Q(z)}\right)$. We see that when $m \geqslant n+q-1$, the growth condition on Q implies that $A_{q, m Q, n}^{2}$ contains the whole $\operatorname{Pol}_{q, n}$.

Notice that $A_{1, m Q, n}^{2}$ consists of analytic polynomials of degree at most $n-1$. For a more general $q \geqslant 1$, functions in the spaces $A_{q, m Q, n}^{2}$ will be called q-analytic polynomials.

https://daneshyari.com/en/article/4590264

Download Persian Version:
https://daneshyari.com/article/4590264

Daneshyari.com

[^0]: E-mail address: anttih@kth.se.

