

Contents lists available at ScienceDirect

Journal of Functional Analysis

Self-adjoint extensions of the Laplace–Beltrami operator and unitaries at the boundary $^{\,\,\!\!\!/}$

Alberto Ibort ^{a,b,*}, Fernando Lledó ^{a,b}, Juan Manuel Pérez-Pardo ^{a,b,c}

^a Department of Mathematics, Universidad Carlos III de Madrid, Madrid,
Avda. de la Universidad 30, E-28911 Leganés (Madrid), Spain
^b Instituto de Ciencias Matemáticas (CSIC – UAM – UC3M – UCM),
Nicolás Cabrera, n 13-15, Campus de Cantoblanco, UAM, 28049, Madrid, Spain
^c INFN-Sezione di Napoli, Via Cintia Edificio 6, I-80126 Napoli, Italy

ARTICLE INFO

Article history: Received 19 February 2014 Accepted 15 October 2014 Available online 30 October 2014 Communicated by B. Schlein

MSC: 47B25 58J32 58Z05 58Z05 47A07

Keywords: Self-adjoint extensions Laplace—Beltrami operator Quadratic forms

ABSTRACT

We construct in this article a class of closed semi-bounded quadratic forms on the space of square integrable functions over a smooth Riemannian manifold with smooth compact boundary. Each of these quadratic forms specifies a semi-bounded self-adjoint extension of the Laplace–Beltrami operator. These quadratic forms are based on the Lagrange boundary form on the manifold and a family of domains parametrized by a suitable class of unitary operators on the boundary that will be called admissible. The corresponding quadratic forms are semi-bounded below and closable. Finally, the representing operators correspond to semi-bounded self-adjoint extensions of the Laplace–Beltrami operator. This family of extensions is compared with results existing in

 $^{^{\}pm}$ The first and third name authors are partly supported by the project MTM2010-21186-C02-02 of the Spanish $Ministerio\ de\ Ciencia\ e\ Innovación\ and\ QUITEMAD\ programme\ P2009\ ESP-1594.$ The second-named author was partially supported by projects DGI MICIIN MTM2012-36372-C03-01 and Severo Ochoa SEV-2011-0087 of the Spanish Ministry of Economy and Competition. The third-named author was also partially supported in 2011 and 2012 by mobility grants of the "Universidad Carlos III de Madrid".

^{*} Corresponding author at: Department of Mathematics, Universidad Carlos III de Madrid, Madrid, Avda. de la Universidad 30, E-28911 Leganés (Madrid), Spain.

E-mail addresses: albertoi@math.uc3m.es (A. Ibort), filedo@math.uc3m.es (F. Lledó), juanma@na.infn.it (J.M. Pérez-Pardo).

Boundary conditions

the literature and various examples and applications are discussed.

© 2014 Elsevier Inc. All rights reserved.

Contents

1.	Introduction		635
2.	Preliminaries: Quadratic forms and the Laplace–Beltrami operator		638
	2.1.	Quadratic forms and operators	638
	2.2.	Scales of Hilbert spaces	640
	2.3.	Laplace–Beltrami operator on Riemannian manifolds and Sobolev spaces	641
3.	A class of closable quadratic forms on a Riemannian manifold		644
	3.1.	Isotropic subspaces	645
	3.2.	Admissible unitaries and closable quadratic forms	649
4.	Closable and semi-bounded quadratic forms		651
	4.1.	Functions and operators on collar neighborhoods	651
	4.2.	Quadratic forms and extensions of the minimal Laplacian	656
	4.3.	Relations to existing approaches	660
5.	Exam	ples	662
6.	Outlo	ok	667
Acknowledgments		669	
References		669	

1. Introduction

In this article we construct a family of closed quadratic forms corresponding to a class of self-adjoint extensions of the Laplace-Beltrami operator on a smooth Riemannian manifold with smooth boundary. It is well known that in a smooth manifold Ω with no boundary the minimal closed extension of the Laplace–Beltrami operator Δ_{\min} is essentially self-adjoint. However, if the manifold has a non-empty boundary $\partial \Omega$, then Δ_{\min} defines a closed and symmetric but not self-adjoint operator. Such situation is common in the study of quantum systems, where some heuristic arguments suggest an expression for the Hamiltonian which is only symmetric. The Laplace-Beltrami operator discussed here can be associated with free quantum systems on the manifold. The description of such systems is not complete until a self-adjoint extension of the Laplace-Beltrami operator has been determined, i.e., a Hamiltonian operator H. Only in this case a unitary evolution of the system is given, because of the one-to-one correspondence between densely defined self-adjoint operators and strongly continuous one-parameter groups of unitary operators $U_t = \exp itH$ provided by Stone's theorem. Therefore the specification of the self-adjoint extension is not just a mathematical artifact, but an essential step in the description of the quantum mechanical system (see, e.g., Chapter X in [40] for further results and motivation).

The collection of all self-adjoint extensions of a densely defined closed symmetric operator T on a complex separable Hilbert space \mathcal{H} was described by von Neumann in terms of the isometries between the deficiency spaces $\mathcal{N}_{\pm} = \ker(T^{\dagger} \mp iI)$ of the opera-

Download English Version:

https://daneshyari.com/en/article/4590292

Download Persian Version:

https://daneshyari.com/article/4590292

Daneshyari.com