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We study representations of the Cuntz algebras ON . While, 
for fixed N , the set of equivalence classes of representations of 
ON is known not to have a Borel cross section, there are var-
ious subclasses of representations which can be classified. We 
study monic representations of ON , that have a cyclic vector 
for the canonical abelian subalgebra. We show that ON has 
a certain universal representation which contains all positive 
monic representations. A large class of examples of monic rep-
resentations is based on Markov measures. We classify them 
and as a consequence we obtain that different parameters 
yield mutually singular Markov measure, extending the clas-
sical result of Kakutani. The monic representations based on 
the Kakutani measures are exactly the ones that have a one-
dimensional cyclic S∗

i -invariant space.
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1. Introduction

The Cuntz algebra ON is indexed by an integer N > 1, where N is the number of 
generators. As a C∗-algebra (denoted ON ), it is defined by its generators and relations 
(the Cuntz-relations), and ON is known to be a simple, purely infinite C∗-algebra, [8]. 
Further its K-groups are known. But its irreducible representations are highly subtle. 
To appreciate the importance of the study of representations of ON , recall that to spec-
ify a representation of ON amounts to identifying a system of isometries in a Hilbert 
space H, with mutually orthogonal ranges, and adding up to H. But such orthogonal 
splitting in Hilbert space may be continued iteratively, and, as a result, one gets links 
between the study of ON -representation on the one hand, to such neighboring areas as 
symbolic dynamics and to filters used in signal processing, corresponding to a system of 
N uncorrelated frequency bands.

Returning to the subtleties of the representations of ON , and their equivalence 
classes, it is known that, for fixed N , that the set of equivalence classes of ir-
reducible representations of ON , does not admit a Borel cross section; i.e., the 
equivalence classes, under unitary equivalence, does not admit a parameterization 
in the measurable Borel category. (Intuitively, they defy classification). Nonethe-
less, special families of inequivalent representations have been found, and they have 
a multitude of applications, both to mathematical physics [4], to the study of 
wavelets [16,15,23,22], to harmonic analysis [33,10,14], to the study of fractals as 
iterated function systems [12,17]; and to the study of End(B(H)) (= endomor-
phisms) where H is a fixed Hilbert space. Hence it is of interest to identify both 
discrete and continuous series of representations of ON , as they arise in such appli-
cations.

From Definition 2.1, it is evident that the problem of finding representations of ON , 
in a Hilbert space, and their properties, is a rather abstract one, and daunting. Unless 
the problem is first pared down and structured, there is little one can do in the way of 
finding and classify ON -representations. There is even a theorem of Glimm [19,20] to the 
effect all representations do not admit a Borel labeling; more precisely the set of equiv-
alence classes of representations of ON do not have a Borel cross section. Nonetheless
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