

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Operator algebras and subproduct systems arising from stochastic matrices $\stackrel{\bigstar}{\approx}$

Adam Dor-On, Daniel Markiewicz*

Department of Mathematics, Ben-Gurion University of the Negev, P.O.B. 653, Beersheva 84105, Israel

ARTICLE INFO

Article history: Received 27 January 2014 Accepted 7 May 2014 Available online 6 June 2014 Communicated by S. Vaes

MSC:

primary 47L30, 46L55, 46L57 secondary 46L08, 60J10

Keywords: Tensor algebra Subproduct system Cuntz–Pimsner algebra Stochastic matrix

ABSTRACT

We study subproduct systems in the sense of Shalit and Solel arising from stochastic matrices on countable state spaces, and their associated operator algebras. We focus on the nonself-adjoint tensor algebra, and Viselter's generalization of the Cuntz-Pimsner C*-algebra to the context of subproduct systems. Suppose that X and Y are Arveson–Stinespring subproduct systems associated to two stochastic matrices over a countable set Ω , and let $\mathcal{T}_+(X)$ and $\mathcal{T}_+(Y)$ be their tensor algebras. We show that every algebraic isomorphism from $\mathcal{T}_+(X)$ onto $\mathcal{T}_+(Y)$ is automatically bounded. Furthermore, $\mathcal{T}_+(X)$ and $\mathcal{T}_+(Y)$ are isometrically isomorphic if and only if X and Y are unitarily isomorphic up to a *-automorphism of $\ell^{\infty}(\Omega)$. When Ω is finite, we prove that $\mathcal{T}_{+}(X)$ and $\mathcal{T}_{+}(Y)$ are algebraically isomorphic if and only if there exists a similarity between X and Y up to a *-automorphism of $\ell^{\infty}(\Omega)$. Moreover, we provide an explicit description of the Cuntz-Pimsner algebra $\mathcal{O}(X)$ in the case where Ω is finite and the stochastic matrix is essential.

@ 2014 Elsevier Inc. All rights reserved.

 $^{^{\}pm}$ The first author was partially supported by GIF (German–Israeli Foundation) research grant No. 2297-2282.6/201, and the second author was partially supported by grant 2008295 from the U.S.–Israel Binational Science Foundation.

^{*} Corresponding author.

E-mail addresses: adamd@math.bgu.ac.il (A. Dor-On), danielm@math.bgu.ac.il (D. Markiewicz).

1. Introduction

In this paper we study the structure of tensor and Cuntz-Pimsner algebras (in the sense of Viselter [35]) associated to subproduct systems, and to what extent these algebras provide invariants for their subproduct systems. These algebras generalize the tensor and Cuntz-Pimsner operator algebras associated to C*-correspondences, which have been the focus of considerable interest by many researchers. Tensor algebras of a C*-correspondence, in particular, have been the subject of a deep study by Muhly and Solel [21–23], which has led into a far-reaching non-commutative generalization of function theory. We will focus on subproduct systems associated to stochastic matrices, and in this context we prove several results which have a close parallel in the work of Davidson, Ramsey and Shalit [10] on the isomorphism problem of tensor algebras of subproduct systems over \mathbb{C} with finite dimensional (Hilbert space) fibers.

A subproduct system over a W*-algebra \mathcal{M} (and over the additive semigroup N) is a family $\{X_n\}_{n\in\mathbb{N}}$ of W*-correspondences over \mathcal{M} endowed with an isometric comultiplication $X_{n+m} \to X_n \otimes X_m$ which is an adjointable \mathcal{N} -bimodule map for every n, m. Subproduct systems were first defined and studied for their own sake by Shalit and Solel [28], and in the special case of $\mathcal{M} = \mathbb{C}$ they were also independently studied under the name of inclusion systems by Bhat and Mukherjee [4]. Subproduct systems had appeared implicitly earlier in the work of many researchers in the study of dilations of semigroups of completely positive maps (cp-semigroups for short) on von Neumann algebras and later C*-algebras (see for example [5,23,20]). The study of cp-semigroups is closely related to the analysis of E₀-semigroups and product systems pioneered by Arveson and Powers (for a comprehensive introduction see [2], and also [32] for product systems of Hilbert modules).

Given a correspondence E over a C*-algebra \mathcal{A} , the Toeplitz C*-algebra $\mathcal{T}(E)$ and the Cuntz–Pimsner C*-algebra $\mathcal{O}(E)$ were introduced by Pimsner [26], and modified by Katsura [17] in the case of non-injective left action of \mathcal{A} . As is well-known, in general the Cuntz–Pimsner algebra does not provide a very strong invariant of the underlying correspondence. However, some information does remain. In the case of graph C*-algebras, for example, if a graph is row-finite, then its C*-algebra is simple if and only if the graph is cofinal and every cycle has an entry. And it is easy to find two graphs with d vertices and irreducible adjacency matrix whose C*-algebras are not isomorphic (see [27]). In contrast, in Section 5 we show that if X is the Arveson–Stinespring subproduct system of a $d \times d$ irreducible stochastic matrix, then $\mathcal{O}(X) \cong C(\mathbb{T}) \otimes M_d(\mathbb{C})$. More generally, we also provide an explicit description for the Cuntz–Pimsner algebra of a subproduct system associated to essential finite stochastic matrices.

On the other hand, the non-self-adjoint tensor algebra $\mathcal{T}_+(E)$ of a C*-correspondence E over \mathcal{A} has often proven to be a strong invariant of the correspondence. Mully and Solel [22] proved that if E and F are aperiodic C*-correspondences, then $\mathcal{T}_+(E)$ is isometrically isomorphic to $\mathcal{T}_+(F)$ if and only if E and F are isometrically isomorphic as \mathcal{A} -bimodules. Similarly, Katsoulis and Kribs [16] and Solel [33] proved

Download English Version:

https://daneshyari.com/en/article/4590309

Download Persian Version:

https://daneshyari.com/article/4590309

Daneshyari.com