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We study subproduct systems in the sense of Shalit and Solel
arising from stochastic matrices on countable state spaces,
and their associated operator algebras. We focus on the non-
self-adjoint tensor algebra, and Viselter’s generalization of
the Cuntz–Pimsner C*-algebra to the context of subproduct
systems. Suppose that X and Y are Arveson–Stinespring sub-
product systems associated to two stochastic matrices over
a countable set Ω, and let T+(X) and T+(Y ) be their ten-
sor algebras. We show that every algebraic isomorphism from
T+(X) onto T+(Y ) is automatically bounded. Furthermore,
T+(X) and T+(Y ) are isometrically isomorphic if and only if
X and Y are unitarily isomorphic up to a *-automorphism of
�∞(Ω). When Ω is finite, we prove that T+(X) and T+(Y ) are
algebraically isomorphic if and only if there exists a similarity
between X and Y up to a *-automorphism of �∞(Ω). More-
over, we provide an explicit description of the Cuntz–Pimsner
algebra O(X) in the case where Ω is finite and the stochastic
matrix is essential.
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1. Introduction

In this paper we study the structure of tensor and Cuntz–Pimsner algebras (in the
sense of Viselter [35]) associated to subproduct systems, and to what extent these al-
gebras provide invariants for their subproduct systems. These algebras generalize the
tensor and Cuntz–Pimsner operator algebras associated to C*-correspondences, which
have been the focus of considerable interest by many researchers. Tensor algebras of
a C*-correspondence, in particular, have been the subject of a deep study by Muhly
and Solel [21–23], which has led into a far-reaching non-commutative generalization of
function theory. We will focus on subproduct systems associated to stochastic matrices,
and in this context we prove several results which have a close parallel in the work of
Davidson, Ramsey and Shalit [10] on the isomorphism problem of tensor algebras of
subproduct systems over C with finite dimensional (Hilbert space) fibers.

A subproduct system over a W*-algebra M (and over the additive semigroup N) is
a family {Xn}n∈N of W*-correspondences over M endowed with an isometric comulti-
plication Xn+m → Xn ⊗ Xm which is an adjointable N -bimodule map for every n,m.
Subproduct systems were first defined and studied for their own sake by Shalit and
Solel [28], and in the special case of M = C they were also independently studied un-
der the name of inclusion systems by Bhat and Mukherjee [4]. Subproduct systems had
appeared implicitly earlier in the work of many researchers in the study of dilations
of semigroups of completely positive maps (cp-semigroups for short) on von Neumann
algebras and later C*-algebras (see for example [5,23,20]). The study of cp-semigroups
is closely related to the analysis of E0-semigroups and product systems pioneered by
Arveson and Powers (for a comprehensive introduction see [2], and also [32] for product
systems of Hilbert modules).

Given a correspondence E over a C*-algebra A, the Toeplitz C*-algebra T (E) and
the Cuntz–Pimsner C*-algebra O(E) were introduced by Pimsner [26], and modified by
Katsura [17] in the case of non-injective left action of A. As is well-known, in general the
Cuntz–Pimsner algebra does not provide a very strong invariant of the underlying cor-
respondence. However, some information does remain. In the case of graph C*-algebras,
for example, if a graph is row-finite, then its C*-algebra is simple if and only if the graph
is cofinal and every cycle has an entry. And it is easy to find two graphs with d vertices
and irreducible adjacency matrix whose C*-algebras are not isomorphic (see [27]). In
contrast, in Section 5 we show that if X is the Arveson–Stinespring subproduct system
of a d × d irreducible stochastic matrix, then O(X) ∼= C(T) ⊗ Md(C). More generally,
we also provide an explicit description for the Cuntz–Pimsner algebra of a subproduct
system associated to essential finite stochastic matrices.

On the other hand, the non-self-adjoint tensor algebra T+(E) of a C*-correspondence
E over A has often proven to be a strong invariant of the correspondence. Muhly
and Solel [22] proved that if E and F are aperiodic C*-correspondences, then T+(E)
is isometrically isomorphic to T+(F ) if and only if E and F are isometrically iso-
morphic as A-bimodules. Similarly, Katsoulis and Kribs [16] and Solel [33] proved
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