

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Bloch functions on the unit ball of an infinite dimensional Hilbert space $\stackrel{\approx}{\approx}$

癯

Oscar Blasco^a, Pablo Galindo^{a,*}, Alejandro Miralles^b

 ^a Departamento de Análisis Matemático, Universidad de Valencia, Valencia, Spain
^b Instituto Universitario de Matemáticas y Aplicaciones de Castellón (IMAC), Universitat Jaume I de Castelló (UJI), Castelló, Spain

ARTICLE INFO

Article history: Received 27 March 2014 Accepted 24 April 2014 Available online 10 May 2014 Communicated by G. Schechtman

MSC: primary 30D45, 46E50 secondary 46G20

Keywords: Bloch function Infinite dimensional holomorphy

ABSTRACT

The Bloch space has been studied on the open unit disk of \mathbb{C} and some homogeneous domains of \mathbb{C}^n . We define Bloch functions on the open unit ball of a Hilbert space E and prove that the corresponding space $\mathcal{B}(B_E)$ is invariant under composition with the automorphisms of the ball, leading to a norm that — modulo the constant functions — is automorphism invariant as well. All bounded analytic functions on B_E are also Bloch functions.

© 2014 Elsevier Inc. All rights reserved.

0. Introduction

The classical Bloch space \mathcal{B} of analytic functions on the open unit disk **D** of \mathbb{C} plays an important role in geometric function theory and it has been studied by many authors.

R.M. Timoney ([4] and [5]) extended the notion of Bloch function by considering bounded homogeneous domains in \mathbb{C}^n , such as the unit ball B_n and the polydisk \mathbf{D}^n .

* Corresponding author.

 $^{^{\}star}$ The first author is supported by Project MTM2011-23164 (MECC, Spain) and the second and third authors are supported by Project MTM 2011-22457 (MECC, Spain).

E-mail addresses: oscar.blasco@uv.es (O. Blasco), pablo.galindo@uv.es (P. Galindo), mirallea@uji.es (A. Miralles).

In this article, Bloch functions on the unit ball B_E of an infinite-dimensional Hilbert space E are introduced. We prove that a number results about Bloch functions on **D** and B_n can be extended to this infinite dimensional setting. Among them, several characterizations of Bloch functions on B_E known to hold in the finite dimensional case.

First, we will recall some background about the classical Bloch space and the space of Bloch functions on B_n . In Section 2, we will introduce the definition of $\mathcal{B}(B_E)$, the space of Bloch functions defined on B_E . A function $f : B_E \to \mathbb{C}$ is said to be a Bloch function if

$$\sup_{x\in B_E} \left(1 - \|x\|^2\right) \left\|\nabla f(x)\right\| < \infty.$$

Section 2 is devoted to the connection between functions in $\mathcal{B}(B_E)$ and their restrictions to one-dimensional subspaces seen as functions defined on **D** or either to their restrictions to finite-dimensional ones, resulting the fact that if for a given n, the restrictions of the function to the n-dimensional subspaces have their Bloch norms uniformly bounded, then the function is a Bloch one and conversely. We also introduce an equivalent norm for $\mathcal{B}(B_E)$ obtained by replacing the gradient by the radial derivative. We exhibit in Section 3 another equivalent norm for $\mathcal{B}(B_E)$ which is invariant — modulo the constant functions — under the action of the automorphisms of the ball. This is achieved without appealing to the invariant Laplacian and relying only on properties of automorphisms of B_E . Further, we are able to show that the space $H^{\infty}(B_E)$ of bounded analytic functions is contractively embedded in $\mathcal{B}(B_E)$, as it occurs in the finite dimensional case. Examples of unbounded Bloch functions are also shown.

1. Background

1.1. The classical Bloch space \mathcal{B}

The classical Bloch space \mathcal{B} (see [3]) is the space of analytic functions $f: \mathbf{D} \longrightarrow \mathbb{C}$ satisfying

$$||f||_{\mathcal{B}} = \sup_{z \in \mathbf{D}} (1 - |z|^2) |f'(z)| < \infty$$

endowed with the norm

$$||f||_{Bloch} = |f(0)| + ||f||_{\mathcal{B}} < \infty$$

so that $(\mathcal{B}, \|\cdot\|_{Bloch})$ becomes a Banach space.

It is well-known that the semi-norm $\|\cdot\|_{\mathcal{B}}$ is invariant by automorphisms, that is, $\|f \circ \varphi\|_{\mathcal{B}} = \|f\|_{\mathcal{B}}$ for any $f \in \mathcal{B}$ and $\varphi \in Aut(\mathbf{D})$. The following basic result can be proved applying Schwarz's lemma (see for instance [7]). Download English Version:

https://daneshyari.com/en/article/4590313

Download Persian Version:

https://daneshyari.com/article/4590313

Daneshyari.com