Completely positive interpolations of compact, trace-class and Schatten- p class operators *

Ming-Hsiu Hsu ${ }^{\text {a }}$, David Li-Wei Kuo ${ }^{\text {b }}$, Ming-Cheng Tsai ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, National Central University, Chung-Li 32054, Taiwan
${ }^{\text {b }}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan

A R T I C L E I N F O

Article history:

Received 28 March 2014
Accepted 14 May 2014
Available online 27 May 2014
Communicated by G. Schechtman

MSC:

15B48
15B51
47L30
81P68

Keywords:

Completely positive linear maps
Trace-class
Compact normal operators
Schatten- p class operators

Abstract

Extending Li and Poon's results on interpolation problems for matrices, we give characterizations of the existence of a completely positive linear map Φ_{cp} between compact (or Schatten- p class) operators sending a particular operator A to another B. It is shown that such a map exists if a multiple of the numerical range of A contains the numerical range of B. Given two commutative families of compact (or Schatten- p class) operators $\left\{A_{\alpha}\right\}$ and $\left\{B_{\alpha}\right\}$, we provide sufficient and necessary conditions to ensure that we can choose a completely positive interpolation $\Phi_{\text {cp }}$ to preserve trace and/or approximate units such that $\Phi_{\mathrm{cp}}\left(A_{\alpha}\right)=B_{\alpha}$ for all α.

© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Interpolation problems arise in many branches of study. Lagrange polynomial interpolation and Nevanlinna-Pick interpolation are two examples. In quantum information theory, people use compact positive operators with trace one to represent quantum states and trace-preserving completely positive linear maps to represent quantum channels (see $[5,11,15])$. One would like to ask the interpolation problem that whether there exists a quantum channel sending a particular input quantum state to a particular output quantum state. The corresponding problem for matrix algebras was considered by Li in $[10,12]$. In this paper, we relate the interpolation problem for compact normal operators to dilation theory and numerical ranges.

Given two operators A and B we try to answer the question of whether there exists a completely positive linear map ϕ such that $\phi(A)=B$. Let A be an $n \times n$ matrix and B an operator in $\mathcal{B}(H)$, where H is a separable Hilbert space which can be of finite or infinite dimension. Choi and $\mathrm{Li}[8]$ (see also [2-4]) show that there is a unital completely positive linear map $\Psi_{\text {cp }}: M_{n} \rightarrow \mathcal{B}(H)$ such that

$$
\begin{equation*}
\Psi_{\mathrm{cp}}(A)=B, \tag{1.1}
\end{equation*}
$$

if and only if there are a separable Hilbert space K and an isometry $V: H \rightarrow K$ such that

$$
\begin{equation*}
B=V^{*}(I \otimes A) V \tag{1.2}
\end{equation*}
$$

In this case, we set $\Psi_{\mathrm{cp}}(T)=V^{*}(I \otimes T) V$. When

$$
A=\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)
$$

one can deduce from Ando [1] (see also [7]) that (1.2) holds exactly when their numerical ranges satisfy

$$
\begin{equation*}
W(B) \subseteq W(A) \tag{1.3}
\end{equation*}
$$

Here the numerical range $W(A)$ of an operator A in $\mathcal{B}(H)$ is defined by

$$
W(A)=\{\langle A x, x\rangle:\|x\|=1\} .
$$

When

$$
A=\left(\begin{array}{ccc}
\gamma_{1} & 0 & 0 \\
0 & \gamma_{2} & 0 \\
0 & 0 & \gamma_{3}
\end{array}\right)
$$

https://daneshyari.com/en/article/4590314

Download Persian Version:

https://daneshyari.com/article/4590314

Daneshyari.com

[^0]: ${ }^{4}$ The first author is supported by the Taiwan NSC Grant 102-2811-M-008-082. The third author is supported by the Taiwan NSC Grant 102-2811-M-110-018.

 * Corresponding author.

 E-mail addresses: hsumh@math.ncu.edu.tw (M.-H. Hsu), mpu.verilog@gmail.com (D.L.-W. Kuo), mctsai2@gmail.com (M.-C. Tsai).

