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Abstract

In this paper we study the regularity properties of two maximal operators of convolution type: the heat
flow maximal operator (associated to the Gauss kernel) and the Poisson maximal operator (associated to
the Poisson kernel). In dimension d = 1 we prove that these maximal operators do not increase the LP-
variation of a function for any p > 1, while in dimensions d > 1 we obtain the corresponding results for the
L2-variation. Similar results are proved for the discrete versions of these operators.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Background
Letp € L'(RY) be a non-negative function such that

/(p(x)dx: 1.
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We let ¢, (x) = t_d(p(t_lx) and consider the maximal operator M, associated to this approxi-
mation of the identity

M(pf(x):Sug(lf|*(pt)(x)- (1.1)
>

The Hardy-Littlewood maximal function, henceforth denoted by M, occurs when we consider
@(x) = (1/m(B1)) xB, (x), where Bj is the d-dimensional ball centered at the origin with radius 1
and m(By) is its Lebesgue measure. In a certain sense, one could say that M controls other such
maximal operators of convolution type. In fact, if our ¢ admits a radial non-increasing majorant
in Ll(Rd) with integral A, from [15, Chapter III, Theorem 2] we know that

My f(x) <AMf (x) (1.2)

for all x € R? and thus we obtain the boundedness of My from LP (RY) to LP(RY) if p>1,and
from L1 (RY) to L1°°(R?) in the case p = 1.

Over the last years there has been considerable effort in understanding the effects of the
Hardy-Littlewood maximal operator M, and some of its variants, in Sobolev functions. In [9]
Kinnunen showed that M : W7 (RY) — W7 (R?) is bounded for p > 1. The paradigm that an
L?-bound implies a WL-P_bound was later extended to a local version of M in [10], to a fractional
version in [11] and to a multilinear version in [5]. The continuity of M : wlrp (Rd) — whr (Rd)
for p > 1 was established by Luiro in [13]. When p =1 the issues become more subtle. The
question on whether the operator f > VM is bounded from W 1(R?) to L' (R¥), posed by
Hajtasz and Onninen in [7], remains open in its general case (see also [6]). Partial progress was
achieved in the discrete setting in the work [3] for dimension d = 1 and in the work [4] for gen-
eral dimension d > 1. In the continuous setting the only progress has been in dimension d = 1.
For the right (or left) Hardy—Littlewood maximal operator, which we call here M, (correspond-
ing to ¢(x) = xj0,17(x) in (1.1)) Tanaka [17] was the first to observe that, if f € WLI(R), then
M, f has a weak derivative and

||(M’f)/“L1(R)< ”f/”Ll(]R)’ (1.3)
which led to the bound for the non-centered Hardy—Littlewood maximal operator M,

MY | 1 gy <20 1y (1.4)

This was later refined by Aldaz and Pérez-Lazaro [1] who obtained, under the assumption that f
is of bounded variation on R, that M f is absolutely continuous and

V(M f)< V() (1.5)

where V (f) denotes here the total variation of f. More recently, in the remarkable work [12],
Kurka showed that if f is of bounded variation on R, then

VMf) < CV(f), (1.6)

for a certain C > 1 (see [16] for the discrete analogue).
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