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This paper is devoted to rigidity results for some elliptic PDEs 
and to optimal constants in related interpolation inequalities 
of Sobolev type on smooth compact connected Riemannian 
manifolds without boundaries. Rigidity means that the PDE 
has no other solution than the constant one at least when 
a parameter is in a certain range. The largest value of this 
parameter provides an estimate for the optimal constant 
in the corresponding interpolation inequality. Our approach 
relies on a nonlinear flow of porous medium / fast diffusion 
type which gives a clear-cut interpretation of technical choices 
of exponents done in earlier works on rigidity. We also 
establish two integral criteria for rigidity that improve upon 
known, pointwise conditions, and hold for general manifolds 
without positivity conditions on the curvature. Using the flow, 
we are also able to discuss the optimality of the corresponding 
constants in the interpolation inequalities.
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1. Introduction and main results

In the past decades there has been considerable activity in establishing sharp in-
equalities using maps or flows. The basic idea is to look for a flow on a function space 
along which a given functional converges to its optimal value, i.e., one turns the idea 
of a Lyapunov function, known from dynamical systems theory, on its head. An exam-
ple is furnished by the relatively recent proofs of the Brascamp–Lieb inequalities using 
nonlinear heat flows in [17,61,26]. Using the same methods a new Brascamp–Lieb type 
inequality on Sd was proved in [26]. Likewise the reverse Brascamp–Lieb inequalities 
can also be obtained in this fashion (see [14]). Another example is the proof of Lieb’s 
sharp Hardy–Littlewood–Sobolev inequality given in [27] where a discrete map on a 
function space was constructed whose iterations drive the Hardy–Littlewood–Sobolev 
functional to its sharp value. Likewise, the sharp form of the Gagliardo–Nirenberg in-
equalities due to Dolbeault and del Pino can be derived using the porous media flow 
(see [29]). The porous media equation can also be used in the context of a special class 
of Hardy–Littlewood–Sobolev inequalities (see [25]).

Closely related are the proofs of sharp inequalities using transportation theory. 
The earliest use of transportation theory to our knowledge was in Barthe’s proof of 
the Brascamp–Lieb inequalities as well as their converse, in [13]. Transportation ideas 
were also applied in [33] for proving the sharp Gagliardo–Nirenberg inequalities and 
in [57] for proving sharp trace inequalities.

In this paper we use a porous media flow on Riemannian manifolds that allow us 
to give relatively straightforward proofs as well as generalizations of rigidity results of 
[21,52,11,53] for a class of nonlinear equations. Before describing the flow, we discuss the 
rigidity results.

Throughout the paper we assume that (M, g) is a smooth compact connected Rieman-
nian manifold of dimension d ≥ 1, without boundary with Δg being the Laplace–Beltrami 
operator on M. For simplicity, we assume that the volume of M, vol(M) is 1 and we 
denote by dvg the volume element. We shall also denote by R the Ricci tensor. Let λ1
be the lowest positive eigenvalue of −Δg. We shall use the notation 2∗ := 2d

d−2 if d ≥ 3, 
and 2∗ := ∞ if d = 1 or 2.

Let us start with results dealing with manifolds whose curvature is bounded from 
below and define

ρ := inf
M

inf
ξ∈Sd−1

R(ξ, ξ).

Theorem 1. Let d ≥ 2 be an integer and assume that ρ is positive. If λ is a positive 
parameter such that

λ ≤ (1 − θ)λ1 + θ
dρ

d− 1 where θ = (d− 1)2(p− 1)
d(d + 2) + p− 1 ,

then for any p ∈ (2, 2∗), the equation
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