

Contents lists available at ScienceDirect

Journal of Functional Analysis

Boundary C^* -algebras of triangle geometries

Guyan Robertson

 $School\ of\ Mathematics\ and\ Statistics,\ Newcastle\ University,\ Newcastle\ upon\ Tyne\ NE1\ 7RU,\ England,\ UK$

ARTICLE INFO

Article history: Received 9 September 2011 Accepted 19 February 2014 Available online 27 March 2014 Communicated by D. Voiculescu

 $\begin{tabular}{ll} Keywords: \\ Euclidean building \\ Maximal boundary \\ C^*-algebra \end{tabular}$

ABSTRACT

Let Δ be a building of type \widetilde{A}_2 and order q, with maximal boundary Ω . Let Γ be a group of type preserving automorphisms of Δ which acts regularly on the chambers of Δ . Then the crossed product C^* -algebra $C(\Omega) \rtimes \Gamma$ is isomorphic to $M_{3(q+1)} \otimes \mathcal{O}_{q^2} \otimes \mathcal{O}_{q^2}$, where \mathcal{O}_n denotes the Cuntz algebra generated by n isometries whose range projections sum to the identity operator.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The boundary at infinity plays an important role in studying the action of groups on euclidean buildings and other spaces of non-positive curvature. The motivation of this article is to determine what information about a group may be recovered from the K-theory of the boundary crossed product C^* -algebra. The focus is on groups of automorphisms of euclidean buildings. An action of a group on a set is said to be regular if it is both free and transitive. Groups of automorphisms of \widetilde{A}_2 buildings which act regularly on the set of chambers have been studied by several authors [6,7,12,14]. The existence of groups which act regularly on the set of chambers (i.e. the existence of "tight triangle geometries") is proved in [12, Theorem 3.3].

E-mail address: guyanrobertson@gmx.com.

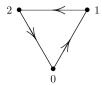


Fig. 1. A chamber showing vertex types and edge orientations.

The main result is the following, where M_n denotes the algebra of complex $n \times n$ matrices and \mathcal{O}_n is the Cuntz C^* -algebra which is generated by n isometries on a Hilbert space whose range projections sum to I.

Theorem 1.1. Let Δ be a building of type \widetilde{A}_2 and order q, with maximal boundary Ω . Let Γ be a group of type preserving automorphisms of Δ which acts regularly on the chambers of Δ . Then the crossed product C^* -algebra $\mathfrak{A}_{\Gamma} = C(\Omega) \rtimes \Gamma$ is isomorphic to $M_{3(q+1)} \otimes \mathcal{O}_{q^2} \otimes \mathcal{O}_{q^2}$.

The theorem is proved by giving an explicit representation of \mathfrak{A}_{Γ} as a rank two Cuntz-Krieger algebra in the sense of [10]. The K-theory of \mathfrak{A}_{Γ} is then determined explicitly as $K_0(\mathfrak{A}_{\Gamma}) \cong K_1(\mathfrak{A}_{\Gamma}) \cong \mathbb{Z}_{q^2-1}$ with the class [1] in $K_0(\mathfrak{A}_{\Gamma})$ corresponding to $3(q+1) \in \mathbb{Z}_{q^2-1}$. The classification theorem of E. Kirchberg and N.C. Phillips for p.i.s.u.n. C^* algebras [1] completes the proof. It is notable that, for these groups, $C(\Omega) \rtimes \Gamma$ depends only on the order q of the building and not on the group Γ . This is the first class of higher rank groups for which the boundary C^* -algebra has been computed exactly. There is a sharp contrast with the class of groups which act regularly on the vertex set of an \widetilde{A}_2 building, where the boundary C^* -algebra \mathfrak{A}_{Γ} frequently appears to determine the group Γ , according to explicit computations derived from [11]. For example, the three torsion-free groups Γ < PGL₃(\mathbb{Q}_2) which act regularly on the vertex set of the corresponding building Δ are distinguished from each other by $K_0(\mathfrak{A}_{\Gamma})$. On the other hand, for q = 2, there are four different groups satisfying the hypotheses of Theorem 1.1, and hence having the same boundary C^* -algebra.

2. Triangle geometries

A locally finite euclidean building whose boundary at infinity is a spherical building of rank 2 is of type \widetilde{A}_2 , \widetilde{B}_2 or \widetilde{G}_2 . This article concerns buildings of type \widetilde{A}_2 , also called triangle buildings. There is a close connection to projective geometry: the link of each vertex of an \widetilde{A}_2 building Δ is the incidence graph of a finite projective plane of order q. The maximal simplices of Δ are triangles, which are called *chambers*. Each vertex of Δ has a $type \ j \in \mathbb{Z}_3$, and each chamber has exactly one vertex of each type. Each edge of Δ lies on q+1 chambers. Orient each edge of Δ from its vertex of type i to its vertex of type i+1 (see Fig. 1). In the link of the vertex v of type i, the vertices of type i+1 [type i+2] correspond to the points [lines] of a projective plane of order q. The chambers of Δ

Download English Version:

https://daneshyari.com/en/article/4590426

Download Persian Version:

https://daneshyari.com/article/4590426

Daneshyari.com