A reduction method for semilinear elliptic equations and solutions concentrating on spheres **

Filomena Pacella ${ }^{\text {a,* }}$, P.N. Srikanth ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Matematica, Università di Roma "Sapienza", P.le A. Moro 2, 00185, Roma, Italy
${ }^{\text {b }}$ TIFR-CAM, Sharadanagar, Chikkabommasandra, Bangalore, 560 065, India

A R T I C L E I N F O

Article history:

Received 20 February 2013
Accepted 12 March 2014
Available online 4 April 2014
Communicated by Daniel W.
Stroock

Keywords:

Semilinear elliptic equations
Symmetry
Concentration phenomena

Abstract

We show that any general semilinear elliptic problem with Dirichlet or Neumann boundary conditions in an annulus $A \subseteq$ $\mathbb{R}^{2 m}, m \geqslant 2$, invariant by the action of a certain symmetry group can be reduced to a nonhomogeneous similar problem in an annulus $D \subset \mathbb{R}^{m+1}$, invariant by another related symmetry. We apply this result to prove the existence of positive and sign changing solutions of a singularly perturbed elliptic problem in A which concentrate on one or two $(m-1)$ dimensional spheres. We also prove that the Morse indices of these solutions tend to infinity as the parameter of concentration tends to infinity.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we propose a method to reduce a semilinear elliptic problem of the type:

$$
\begin{cases}-\Delta u=f(u) & \text { in } A \subseteq \mathbb{R}^{2 m} \tag{1.1}\\ u=0 \text { or } \frac{\partial u}{\partial \nu}=0 & \text { on } \partial A\end{cases}
$$

[^0]where A is an annulus in $\mathbb{R}^{2 m}, m \geqslant 2$,
$$
A=\left\{x \in \mathbb{R}^{2 m}: a<|x|<b, 0<a<b\right\}
$$
and f is a $C^{1, \alpha}$ nonlinearity, to the semilinear elliptic problem:
\[

$$
\begin{cases}-\Delta v=\frac{f(v)}{2|z|} \quad & \text { in } D \subseteq \mathbb{R}^{m+1} \tag{1.2}\\ v=0 \text { or } \frac{\partial v}{\partial \nu}=0 & \text { on } \partial D\end{cases}
$$
\]

where $z \in \mathbb{R}^{m+1}$ and D is the annulus

$$
D=\left\{z \in \mathbb{R}^{m+1}: \frac{a^{2}}{2}<|z|<\frac{b^{2}}{2}\right\}
$$

As will be clear from the construction, there will be a one to one correspondence between solutions of (1.1) invariant under the action of a symmetry group in $H_{0}^{1}(A)$ or $H^{1}(A)$ and solutions of (1.2) invariant under another symmetry in $H_{0}^{1}(D)$ or $H^{1}(D)$.

More precisely, writing $x \in \mathbb{R}^{2 m}$ as $x=\left(y_{1}, y_{2}\right), y_{i} \in \mathbb{R}^{m}, i=1,2$, we consider solutions u of (1.1) which are radially symmetric in y_{1} and y_{2} i.e. $u(x)=w\left(\left|y_{1}\right|,\left|y_{2}\right|\right)$ and solutions v of (1.2) which are axially symmetric i.e. $v(z)=h(|z|, \varphi)$ with $\varphi=\arccos \left(\frac{z}{|z|} \cdot p\right)$ for a unit vector $p \in \mathbb{R}^{m+1}$.

Since the domains are annuli, by standard regularity theory all solutions we consider are classical $C^{2, \alpha}$-solutions. We set:

$$
\begin{aligned}
& X=\left\{u \in C^{2, \alpha}(\bar{A}): u(x)=w\left(\left|y_{1}\right|,\left|y_{2}\right|\right)\right\} \\
& Y=\left\{v \in C^{2, \alpha}(\bar{D}): v \text { axially symmetric }\right\}
\end{aligned}
$$

Our result is the following:
Theorem 1.1. There is a bijective correspondence between solutions of (1.1) in X and solutions of (1.2) in Y.

The map which gives the bijection to prove Theorem 1.1 will be defined in Section 3 after choosing suitable coordinates in $\mathbb{R}^{2 m}$ and \mathbb{R}^{m+1}.

The possibility of reducing a problem in dimension $2 m$ to a problem in the lower dimension $(m+1)$ is of great importance in the study of semilinear elliptic equations. As example one can think of the case of power nonlinearities when critical or supercritical problems in $\mathbb{R}^{2 m}$ can become subcritical in \mathbb{R}^{m+1}. Moreover solutions concentrating on sets of a certain dimension in \mathbb{R}^{m+1} (e.g. points) can give rise to solutions concentrating on higher dimensional manifolds on $\mathbb{R}^{2 m}$.

Indeed, the inspiration for our method came from the paper [14] where a reduction method was introduced to pass from a singularly perturbed problem in an annulus in \mathbb{R}^{4}

https://daneshyari.com/en/article/4590430

Download Persian Version:
https://daneshyari.com/article/4590430

Daneshyari.com

[^0]: * Work supported by PRIN-201274FYK7-005 grant and INDAM-GNAMPA.
 * Corresponding author.

 E-mail addresses: pacella@mat.uniroma1.it (F. Pacella), srikanth@math.tifrbng.res.in (P.N. Srikanth).

