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Abstract

We extend the Landauer–Büttiker formalism in order to accommodate both unitary and self-adjoint op-
erators which are not bounded from below. We also prove that the pure point and singular continuous
subspaces of the decoupled Hamiltonian do not contribute to the steady current. One of the physical appli-
cations is a stationary charge current formula for a system with four pseudo-relativistic semi-infinite leads
and with an inner sample which is described by a Schrödinger operator defined on a bounded interval with
dissipative boundary conditions. Another application is a current formula for electrons described by a one
dimensional Dirac operator; here the system consists of two semi-infinite leads coupled through a point
interaction at zero.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Considering a problem in quantum statistical mechanics and solid state physics Lifshits [21]
found that there is a unique real-valued function ξ(·) ∈L1(R, dλ) such that the formula

tr
(
Φ(H0 + V )−Φ(H0)

)= ∫
R

ξ(λ)Φ ′(λ) dλ (1.1)

is valid for a suitable class of functions Φ(·) guaranteeing that Φ(H0 + V ) − Φ(H0) is a trace
class operator. Here H0 is a self-adjoint operator and V is a finite dimensional self-adjoint op-
erator. Formula (1.1) and function ξ(·) are known in the literature as trace formula and spectral
shift function, respectively.

Inspired by the work of Lifshits the trace formula was carefully investigated and generalized
by Kreı̆n, cf. [17]. In a first step Kreı̆n has shown that Lifshits’ result remains true if V is a
self-adjoint trace class operator. Later on he generalized the result to pairs of self-adjoint oper-
ators S = {H,H0} such that their resolvent difference is a trace class operator, cf. [18]. In the
following we call those pairs trace class scattering systems. For trace class scattering systems
there exists a real-valued function ξ(·) ∈ L1(R, dλ

1+λ2 ) called also the spectral shift function such
that

tr
(
Φ(H)−Φ(H0)

)= ∫
R

ξ(λ)Φ ′(λ) dλ (1.2)

is valid for a suitable class of functions Φ(·). In particular, the formula

tr
(
(H − z)−1 − (H0 − z)−1)= −

∫
R

ξ(λ)

(λ− z)2
dλ, z ∈C \R,

holds. In contrast to the spectral shift function defined by (1.2), the function ξ(·) defined by the
last equation is now not unique and is only determined up to a real constant. To verify (1.2) Kreı̆n
firstly proved a trace formula (1.1) for a pair U = {U,U0} of unitary operators for which U −U0
is a trace class operator, cf. [18]. Regarding U and U0 as the Cayley transforms of H and H0,
respectively, Kreı̆n was able to establish (1.2).

If S = {H,H0} is a trace class scattering system, then the wave operators

W±(H,H0) = s- lim
t→±∞ eitH e−itH0Pac(H0) (1.3)

exist and are complete where Pac(H0) is the projection onto the absolutely continuous subspace
of H0, see [3]. Let Π(Hac

0 ) be a spectral representation of the absolutely continuous part Hac
0

of H0, cf. Appendix C. Further, let {S(λ)}λ∈R be the scattering matrix of the trace class scattering
system S with respect to Π(Hac

0 ). It turns out that there is a suitable chosen spectral shift function
ξ(·) such that the so-called Birman–Kreı̆n formula

det
(
S(λ)

)= e−2πiξ(λ)

holds for a.e. λ ∈R.
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