On the torsion function with Robin or Dirichlet boundary conditions

M. van den Berg ${ }^{\mathrm{a}, *}$, D. Bucur ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom
${ }^{\text {b }}$ Laboratoire de Mathématiques, CNRS UMR 5127, Université de Savoie Campus Scientifique, 73376 Le-Bourget-du-Lac, France

Received 26 April 2013; accepted 7 July 2013
Available online 17 July 2013
Communicated by C. De Lellis

Abstract

For $p \in(1,+\infty)$ and $b \in(0,+\infty]$ the p-torsion function with Robin boundary conditions associated to an arbitrary open set $\Omega \subset \mathbb{R}^{m}$ satisfies formally the equation $-\Delta_{p}=1$ in Ω and $|\nabla u|^{p-2} \frac{\partial u}{\partial n}+$ $b|u|^{p-2} u=0$ on $\partial \Omega$. We obtain bounds of the L^{∞} norm of u only in terms of the bottom of the spectrum (of the Robin p-Laplacian), b and the dimension of the space in the following two extremal cases: the linear framework (corresponding to $p=2$) and arbitrary $b>0$, and the non-linear framework (corresponding to arbitrary $p>1$) and Dirichlet boundary conditions $(b=+\infty)$. In the general case, $p \neq 2, p \in(1,+\infty)$ and $b>0$ our bounds involve also the Lebesgue measure of Ω. © 2013 Elsevier Inc. All rights reserved.

Keywords: Torsion function; Robin boundary conditions; p-Laplacian

1. Introduction

Let Ω be an open set in Euclidean space \mathbb{R}^{m} with non-empty boundary $\partial \Omega$, and let the torsion function $u: \Omega \rightarrow \mathbb{R}$ be the unique weak solution of

$$
-\Delta u=1,\left.\quad u\right|_{\partial \Omega}=0
$$

[^0]If Ω has finite measure the solution is obtained in the usual framework of the Lax-Milgram theorem, while if Ω has infinite measure then $1 \notin H^{-1}(\Omega)$ and u is defined as the supremum over all balls of the torsion functions associated to $\Omega \cap B$.

The torsional rigidity is the set function defined by

$$
\begin{equation*}
P(\Omega)=\int_{\Omega} u . \tag{1}
\end{equation*}
$$

Since $u \geqslant 0$ we have that $P(\Omega)$ takes values in the non-negative extended real numbers, and that $P(\Omega)=\|u\|_{L^{1}(\Omega)}$, whenever u is integrable. Both the torsion function and the torsional rigidity arise in many areas of mathematics, for example in elasticity theory [$2,19,23$], in heat conduction [5], in the definition of gamma convergence [8,18], in the study of minimal submanifolds [21] etc. The connection with probability theory is as follows. Let $\left(B(s), s \geqslant 0 ; \mathbb{P}_{x}, x \in \mathbb{R}^{m}\right)$ be Brownian motion with generator Δ, and let

$$
T_{\Omega}=\inf \left\{s \geqslant 0: B(s) \in \mathbb{R}^{m} \backslash \Omega\right\}
$$

be the first exit time of Brownian motion from Ω. Then [24]

$$
u(x)=\mathbb{E}_{x}\left[T_{\Omega}\right], \quad x \in \Omega .
$$

Let λ be the bottom of the spectrum of the Dirichlet Laplacian acting in $L^{2}(\Omega)$.
In [6,7] it was shown that $u \in L^{\infty}(\Omega)$ if and only if $\lambda>0$. If $\lambda>0$ then

$$
\begin{equation*}
\lambda^{-1} \leqslant\|u\|_{L^{\infty}(\Omega)} \leqslant(4+3 m \log 2) \lambda^{-1} . \tag{2}
\end{equation*}
$$

Previous results of this nature were obtained in Theorem 1 of [3] for open, simply connected, planar sets Ω. The question of the sharp constant in the upper bound in the right hand side of (2) for these sets was addressed in [3,4].

In this paper we consider the torsion function u_{b} for the Laplacian with Robin boundary conditions. The Robin Laplacian is generated by the quadratic form

$$
\mathcal{Q}_{b}(u, v)=\int_{\Omega} \nabla u \cdot \nabla v+b \int_{\partial \Omega} u v d \mathcal{H}^{m-1}, \quad u, v \in W_{2,2}^{1}(\Omega, \partial \Omega),
$$

where \mathcal{H}^{m-1} denotes the $(m-1)$-dimensional Hausdorff measure on $\partial \Omega$, and b is a strictly positive constant. This quadratic form defined on $W_{2,2}^{1}(\Omega, \partial \Omega)$ is closed. The unique self-adjoint operator generated by \mathcal{Q}_{b} is the Robin Laplacian which formally satisfies the boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial n}+b u=0, \quad x \in \partial \Omega \tag{3}
\end{equation*}
$$

where n denotes the outward unit normal, and $\frac{\partial}{\partial n}$ is the normal derivative. The torsion function u_{b} is the unique weak solution of $-\Delta u=1$ with boundary condition (3). For convenience we put $q_{b}(u)=\mathcal{Q}_{b}(u, u)$. It is well known that $W_{2,2}^{1}(\Omega)=W^{1,2}(\Omega)$ if Ω is bounded and $\partial \Omega$ is Lipschitz. See [22] for details. However, as all our results are for arbitrary open sets in \mathbb{R}^{m} we

https://daneshyari.com/en/article/4590544

Download Persian Version:

https://daneshyari.com/article/4590544

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mamvdb@bristol.ac.uk (M. van den Berg), dorin.bucur@univ-savoie.fr (D. Bucur).

