

Available online at www.sciencedirect.com

ScienceDirect

JOURNAL OF Functional Analysis

Journal of Functional Analysis 266 (2014) 1702-1715

www.elsevier.com/locate/jfa

Closed subgroups as Ditkin sets

Antoine Derighetti

Received 2 May 2013; accepted 6 November 2013

Available online 28 November 2013

Communicated by D. Voiculescu

Abstract

We prove that every closed subgroup of a locally compact group is locally p-Ditkin for 1 . © 2013 Elsevier Inc. All rights reserved.

Keywords: Abstract harmonic analysis; Locally compact groups; Operator theory

1. Introduction

Let G be a locally compact group and H a closed subgroup. The following result is well known for locally compact abelian group: whenever $f \in L^1(\widehat{G})$ (here \widehat{G} denotes the Pontrjagin dual of G) is such that \widehat{f} vanishes on H and $u \in L^{\infty}(\widehat{G})$ is such that $sp(f*u) \subset H$, then f*u=0. The aim of this work is to generalize this result to arbitrary non-commutative locally compact groups and arbitrary closed subgroups. We replace $L^1(\widehat{G})$ by the Figà-Talamanca–Herz algebra $A_p(G)$ and $L^{\infty}(\widehat{G})$ by the Banach algebra $CV_p(G)$ of all convolution operators of $L^p(G)$ where 1 . In the classical case <math>p=2 our statement (Corollary 6) is the following: whenever $u \in A_p(G)$ is such that u vanishes on H and $T \in CV_p(G)$ is such that the support of uT is contained in H, then uT=0. Equivalently if $u \in A_p(G)$ vanishes on H and $Y \in CV_p(G)$ has support in H then the equation uX = Y has no solution $X \in CV_p(G)$ unless Y=0.

We proved this for closed normal subgroups in [4], and for neutral subgroups in collaboration with J. Delaporte in [2]. For G amenable and H arbitrary closed subgroup, the result is due to B. Forrest, E. Kaniuth, A.T. Lau and N. Spronk [7]. J. Ludwig and L. Turowska proved [9] for G, a second countable locally compact group, that every closed subgroup is locally 2-Ditkin. In [5] we obtained that every closed amenable subgroup of a locally compact group is locally p-Ditkin.

E-mail address: antoine.derighetti@epfl.ch.

2. Locally p-Ditkin sets

For $f \in \mathbb{C}^G$, a and $x \in G$ we put $\check{f}(x) = f(x^{-1})$, $_af(x) = f(ax)$ and $f_a(x) = f(xa)$. If A is a subset of G Res_A f denotes the map of A into \mathbb{C} $a \mapsto f(a)$. We denote by m_G a left invariant Haar measure and by Δ_G the modular function of G. We write $\mathcal{L}^1(G)$ for the \mathbb{C} -vector space of all $\varphi \in \mathbb{C}^G$ which are integrable. If $1 <math>\mathcal{L}^p(G)$ is the vector space of all $\varphi \in \mathbb{C}^G$ such that φ is measurable and $|\varphi|^p$ is integrable. For $1 \le p < \infty$ and $f \in \mathcal{L}^p(G)$ we put $N_p(f) = (\int |f(x)|^p dx)^{1/p}$. For $f \in \mathbb{C}^G$ we denote by [f] the set of all $g \in \mathbb{C}^G$ with g(x) = f(x) almost everywhere. For $f \in \mathcal{L}^p(G)$ we set $\|[f]\|_p = N_p(f)$ and $L^p(G) = \{[f] \mid f \in \mathcal{L}^p(G)\}$. For 1 , <math>p' = p/(p-1), $f \in \mathcal{L}^p(G)$ and $g \in \mathcal{L}^{p'}(G)$ we put $\langle [f], [g] \rangle = \int f(x) \overline{g(x)} \, dx$.

Let $1 . We denote by <math>\mathcal{A}_p(G)$ the set of all pairs $((r_n), (s_n))$ where (r_n) is a sequence of $\mathcal{L}^p(G)$ and (s_n) is a sequence of $\mathcal{L}^{p'}(G)$ such that $\sum N_p(r_n)N_{p'}(s_n)$ converges. By definition $A_p(G)$ is the set of all $u \in \mathbb{C}^G$ such that there is $((r_n), (s_n)) \in \mathcal{A}_p(G)$ with $u(x) = \sum (\overline{r_n} * \check{s_n})(x)$ for every $x \in G$. We put

$$||u||_{A_p(G)} = \inf \left\{ \sum N_p(r_n) N_{p'}(s_n) \mid ((r_n), (s_n)) \in \mathcal{A}_p(G), \ u = \sum \overline{r_n} * \check{s}_n \right\}.$$

We refer to [6] for complementary results on $A_p(G)$.

Definition 1. Let G be a locally compact group, 1 and <math>F a closed subset of G. We say that F is a locally p-Ditkin subset of G if for every $u \in A_p(G) \cap C_{00}(G)$ vanishing on F and for every $\varepsilon > 0$ there is $v \in A_p(G) \cap C_{00}(G)$ with supp $v \cap F = \emptyset$ and $||u - uv|| < \varepsilon$.

In [4, p. 102] we proved that a closed subset F of G is locally p-Ditkin if and only if for every $T \in CV_p(G)$ and every $u \in A_p(G)$ with supp $uT \subset F$ and $Res_F u = 0$ we have uT = 0.

3. The action of $A_p(G)$ on $\mathcal{L}(L^p(G))$

Denote by \mathcal{T} the trace class operators of $L^p(G)$ and by \mathcal{L} the bounded operators of $L^p(G)$. For $((r_n), (s_n)) \in \mathcal{A}_p(G)$ we denote by $T_{((r_n), (s_n))}$ the trace class operator $\langle T_{((r_n), (s_n))} f, g \rangle = \sum \langle [r_n], g \rangle \langle f, [\overline{s_n}] \rangle$. Putting

$$F_{((r_n),(s_n))}(x,y) = \sum r_n(x)s_n(y)$$

if $\sum r_n(x)s_n(y)$ converges and 0 otherwise, we get

$$\langle T_{((r_n),(s_n))}[f],[g]\rangle = \int_{G\times G} F_{((r_n),(s_n))}(x,y)\overline{g(x)}f(y)\,dx\,dy.$$

This integral formula permits to associate in a bilinear way to $\varphi \in C^b(G \times G)$ and $S \in \mathcal{T}$ an operator φS of \mathcal{L} with $\|\varphi S\| \leqslant \|\varphi\|_{\infty} \|S\|_{\mathcal{T}}$. Setting for $\psi : G \times G \to \mathbb{C}$ $(\mathcal{Z}\psi)(x,y) = \psi(y,x)$ and for $\varphi : G \to \mathbb{C}$ $(M_G\varphi)(x,y) = \varphi(yx^{-1})$, we get for $u \in A_p(G)$ and $S \in \mathcal{T}$ $\mathcal{Z}M_GuS \in \mathcal{T}$ and $\|\mathcal{Z}M_GuS\|_{\mathcal{T}} \leqslant \|u\|_{A_p(G)} \|S\|_{\mathcal{T}}$. The pairing of \mathcal{L} with \mathcal{T} is defined in the following way: for $U \in \mathcal{L}$ and $S \in \mathcal{T}$ we put

Download English Version:

https://daneshyari.com/en/article/4590548

Download Persian Version:

https://daneshyari.com/article/4590548

<u>Daneshyari.com</u>