# Criteria of spectral gap for Markov operators ${ }^{\text {N }}$ 

Feng-Yu Wang ab, , ,<br>${ }^{\text {a }}$ School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China<br>${ }^{\text {b }}$ Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, United Kingdom

Received 21 May 2013; accepted 20 November 2013
Available online 2 December 2013
Communicated by L. Gross


#### Abstract

Let $(E, \mathcal{F}, \mu)$ be a probability space, and let $P$ be a Markov operator on $L^{2}(\mu)$ with 1 a simple eigenvalue such that $\mu P=\mu$ (i.e. $\mu$ is an invariant probability measure of $P$ ). Then $\hat{P}:=\frac{1}{2}\left(P+P^{*}\right)$ has a spectral gap, i.e. 1 is isolated in the spectrum of $\hat{P}$, if and only if $$
\|P\|_{\tau}:=\lim _{R \rightarrow \infty} \sup _{\mu\left(f^{2}\right) \leqslant 1} \mu\left(f(P f-R)^{+}\right)<1 .
$$

This strengthens a conjecture of Simon and Høegh-Krohn on the spectral gap for hyperbounded operators solved recently by L. Miclo in [10]. Consequently, for a symmetric, conservative, irreducible Dirichlet form on $L^{2}(\mu)$, a Poincaré/log-Sobolev type inequality holds if and only if so does the corresponding defective inequality. Extensions to sub-Markov operators and non-conservative Dirichlet forms are also presented. © 2013 Elsevier Inc. All rights reserved.

Keywords: Spectral gap; Ergodicity; Tail norm; Poincaré inequality


## 1. Introduction

Let $(E, \mathcal{F}, \mu)$ be a probability space. Let $P$ be a Markov operator on $L^{2}(\mu)$ (i.e. $P$ is a linear operator on $L^{2}(\mu)$ such that $P 1=1$ and $f \geqslant 0$ implies $P f \geqslant 0$ ) such that $\mu P=\mu$ (i.e. $\mu$ is an invariant probability measure of $P$ ). Let $\hat{P}=\frac{1}{2}\left(P+P^{*}\right)$ be the additive symmetrization of $P$,

[^0]where $P^{*}$ is the adjoint operator of $P$ on $L^{2}(\mu)$. Assuming that 1 is a simple eigenvalue of $P$, we aim to investigate the existence of spectral gap of $\hat{P}$ (i.e. 1 is an isolated point in $\sigma(\hat{P})$, the spectrum of $\hat{P}$ ).

It is well known by the ergodic theorem that 1 is a simple eigenvalue of $P$ if and only if $P$ is ergodic, i.e. for $f \in L^{2}(\mu)$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} P^{k} f=\mu(f) \quad \text { holds in } L^{2}(\mu) .
$$

Moreover, the ergodicity (i.e. 1 is a simple eigenvalue) is also equivalent to the $\mu$-essential irreducibility (or resolvent-positive-improving property, see [20]) of $P$ :

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mu\left(1_{A} P^{n} 1_{B}\right)>0, \quad \mu(A), \mu(B)>0 \tag{1.1}
\end{equation*}
$$

Indeed, if for some $f \in L^{2}(\mu)$ with $\mu(f)=0$ and $\mu\left(f^{2}\right)=1$ such that $P f=f$, then by the Jensen inequality we have $P f^{+} \geqslant(P f)^{+}=f^{+}$. But $\mu\left(P f^{+}\right)=\mu\left(f^{+}\right)$, we conclude that $P f^{+}=f^{+}$. Then for any $\varepsilon>0$ such that $\mu(f<-\varepsilon), \mu(f>\varepsilon)>0$, we have

$$
\mu\left(1_{\{f<-\varepsilon\}} P^{n} 1_{\{f>\varepsilon\}}\right) \leqslant \frac{1}{\varepsilon^{2}} \mu\left(f^{-} P^{n} f^{+}\right)=\frac{1}{\varepsilon^{2}} \mu\left(f^{-} f^{+}\right)=0, \quad n \geqslant 1,
$$

so that (1.1) does not hold. On the other hand, if there exist $A, B \in \mathcal{F}$ with $\mu(A), \mu(B)>0$ such that $\mu\left(1_{B} P^{n} 1_{A}\right)=0$ for all $n \geqslant 1$, then the class

$$
\mathcal{C}:=\left\{0 \leqslant f \leqslant 1: \mu\left(1_{B} P^{n} f\right)=0, n \geqslant 1\right\}
$$

contains the non-trivial function $1_{A}$. Since the family is bounded in $L^{2}(\mu)$, we may take a sequence $\left\{f_{n}\right\} \subset \mathcal{C}$ which converges weakly to some $f \in \mathcal{C}$ such that $\mu(f)=\sup _{g \in \mathcal{C}} \mu(g)$. As $f \vee(P f)$ is also in $\mathcal{C}$, we have $\mu((P f) \vee f)=\mu(f)=\mu(P f)$. Thus, $P f=f$. Since $\mu(f) \geqslant \mu(A)>0$ and $\mu\left(1_{B} P f\right)=0$, we conclude that $f-\mu(f)$ is a non-trivial eigenfunction of $P$ with respect to 1 , so that 1 is not a simple eigenvalue of $P$.

When $P$ is symmetric, the spectrum $\sigma(P)$ of $P$ is contained in $[-1,1]$. Then $P$ has a spectral gap if $P$ is ergodic and $\sigma(P) \subset\{1\} \cup[-1, \theta]$ for some $\theta \in[-1,1)$; or equivalently, the Poincaré inequality

$$
\begin{equation*}
\mu\left(f^{2}\right) \leqslant \frac{1}{1-\theta} \mu(f(f-P f))+\mu(f)^{2}, \quad f \in L^{2}(\mu) \tag{1.2}
\end{equation*}
$$

holds. When $P$ is non-symmetric, (1.2) is equivalent to $\sigma\left(\left.\hat{P}\right|_{\mathcal{H}_{0}}\right) \subset[-1, \theta]$, where $\mathcal{H}_{0}:=\{f \in$ $\left.L^{2}(\mu): \mu(f)=0\right\}$. Thus, (1.2) holds for some $\theta \in[-1,1)$ if and only if $\hat{P}$ has a spectral gap.

Recall that $P$ is called hyperbounded if for some $p>2$

$$
\|P\|_{2 \rightarrow p}:=\sup _{\mu\left(f^{2}\right) \leqslant 1} \mu\left(|P f|^{p}\right)^{\frac{1}{p}}<\infty
$$

# https://daneshyari.com/en/article/4590565 

Download Persian Version:

## https://daneshyari.com/article/4590565

## Daneshyari.com


[^0]:    * Supported in part by NNSFC (11131003), SRFDP, and the Fundamental Research Funds for the Central Universities.
    * Correspondence to: School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China.

    E-mail addresses: wangfy @bnu.edu.cn, F.-Y.Wang @ swansea.ac.uk.

