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Abstract

We prove that any irreducible unitary representation of GL(n, R) and GL(n, C) admits an equivariant
linear form with respect to one of the subgroups considered by Klyachko.
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1. Introduction

Let F be either R or C and G, := GL(n, F). For any decomposition n = r 4 2k we consider
a subgroup of G,, defined by

Hyo = {(g :) €Gu: ue Ny, X € Myyox(F) andheSp(Zk)}.

Here N, C G, denotes the group of » X r upper unitriangular matrices and

Sp(2k) ={g € Gox: "gJxg = Jx} where Jy = (_wk wk) )

and wy € Gy is the permutation matrix with (7, j)-th entry equal to 8;1—;, ;. Let ¥ be a non-
trivial additive character of F'. We associate to i the character ¥, of N, defined by

Yr(u) = 1[/(“1,2 +-+ urfl,r)

and the character ¢, ox of H, o defined by

Dro (g ;f) = (@),

Let f}\,, denote the unitary dual of G,,. For & € é\n we consider the space Homp, ,, (%, drok)
of continuous (H;. 2, ¢r 2k )-equivariant linear forms on the Frechét space 7 of smooth vectors
in 7. We refer to a non-zero element of Homg, ,, (™, ¢r2k) as a Klyachko linear form of type
(r,2k). Let

Mok = {f :G, — C: fissmooth and f(hg) = ¢rok(h) f(g), h € Hy ok, g € G,,}.

If m is an irreducible Hilbert representation of G, then a non-zero element ¢ €
Homy, ,, (7, ¢r2) defines a realization of 7°° in the space of functions M, 5 via v~ f, :
7% — M, 2 where f,(g) = £(w(g)v), g € G,. We therefore refer to M, o as the Klyachko
model of type (r, 2k). With this relation in mind for the rest of this paper we focus on Klyachko
linear forms rather than Klyachko models.

In order to formulate our main result we I recall that the partition V(;r), the SL(2) -type of , is
defined in [34, Section 2.2] for every 7w € G based on the classification of G (See Section 2.4
below.)
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