

Available online at www.sciencedirect.com

SciVerse ScienceDirect

JOURNAL OF Functional Analysis

Journal of Functional Analysis 265 (2013) 2585-2644

www.elsevier.com/locate/jfa

The large-N limit of the Segal–Bargmann transform on \mathbb{U}_N

Bruce K. Driver a,*,1, Brian C. Hall b,2, Todd Kemp a,3

a Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, United States
b Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618, United States

Received 15 May 2013; accepted 23 July 2013

Available online 19 August 2013

Communicated by L. Gross

Abstract

We study the (two-parameter) Segal–Bargmann transform $\mathbf{B}_{s,t}^N$ on the unitary group \mathbb{U}_N , for large N. Acting on matrix-valued functions that are equivariant under the adjoint action of the group, the transform has a meaningful limit $\mathcal{G}_{s,t}$ as $N \to \infty$, which can be identified as an operator on the space of complex Laurent polynomials. We introduce the space of *trace polynomials*, and use it to give effective computational methods to determine the action of the heat operator, and thus the Segal–Bargmann transform. We prove several concentration of measure and limit theorems, giving a direct connection from the finite-dimensional transform $\mathbf{B}_{s,t}^N$ to its limit $\mathcal{G}_{s,t}$. We characterize the operator $\mathcal{G}_{s,t}$ through its inverse action on the standard polynomial basis. Finally, we show that, in the case s = t, the limit transform $\mathcal{G}_{t,t}$ is the "free Hall transform" \mathcal{G}^t introduced by Biane.

© 2013 Elsevier Inc. All rights reserved.

Keywords: Segal-Bargmann transform; Heat kernel analysis on Lie groups

E-mail addresses: bdriver@math.ucsd.edu (B.K. Driver), bhall@nd.edu (B.C. Hall), tkemp@math.ucsd.edu

^{*} Corresponding author.

⁽T. Kemp).

Supported in part by NSF Grant DMS-1106270.

Supported in part by NSF Grant DMS-1001328.

³ Supported in part by NSF Grant DMS-1001894.

Contents

1.	Introd	uction	586
	1.1.	Main definitions and theorems	587
	1.2.	Intertwining operators and partial product rule	593
	1.3.	History and discussion	594
2.	Equiva	ariant functions and trace polynomials	595
	2.1.	Functional calculus	596
	2.2.	Results on equivariant functions	597
	2.3.	Density of trace polynomials	599
	2.4.	Asymptotic uniqueness of trace polynomial representations	601
3.	The La	aplacian and heat operator on trace polynomials	603
	3.1.	Magic formulas	603
	3.2.	Derivative formulas	605
	3.3.	Intertwining formulas I	608
	3.4.	Intertwining formulas II	615
4.	Limit theorems		620
	4.1.	Concentration of measures	621
	4.2.	Proof of main limit Theorem 1.11	
	4.3.	Limit norms and the proof of Theorem 1.13	
5.	The free unitary Segal–Bargmann transform		
	5.1.	Biane polynomials and differential recursion	630
	5.2.	Exponential growth bounds	632
	5.3.	Holomorphic PDE	
	5.4.	Generating function	
	5.5.	Proof of Theorem 1.17 ($\mathcal{G}_{t,t} = \mathcal{G}^t$)	
	_	ments	
		Heat kernel measures on Lie groups	
References			

1. Introduction

The Segal-Bargmann transform (also known in the physics literature as the Bargmann transform or coherent state transform) is a unitary isomorphism from L^2 to holomorphic L^2 . It was originally introduced by Segal [30–32] and Bargmann [1,2], as a map

$$S_t: L^2(\mathbb{R}^N, \gamma_t^N) \to \mathcal{H}L^2(\mathbb{C}^N, \gamma_{t/2}^{2N})$$

where γ_t^N is the standard Gaussian heat kernel measure $(\frac{1}{2\pi t})^{N/2} \exp(-\frac{1}{2t}|\mathbf{x}|^2) d\mathbf{x}$ on \mathbb{R}^N , and $\mathcal{H}L^2$ denotes the subspace of square-integrable *holomorphic* functions. The transform S_t is given by convolution with the heat kernel, followed by analytic continuation.

In [17], the second author introduced an analog of the Segal–Bargmann transform for any compact Lie group K. Let Δ_K denote the Laplace operator over K (determined by an Ad-invariant inner product on the Lie algebra \mathfrak{k} of K), and denote by $e^{\frac{t}{2}\Delta_K}$ the corresponding heat operator. The generalized Segal–Bargmann transform B_t maps functions on K to holomorphic functions on the complexification $K_{\mathbb{C}}$ of K, by application of the heat operator and analytic continuation.

Download English Version:

https://daneshyari.com/en/article/4590638

Download Persian Version:

https://daneshyari.com/article/4590638

<u>Daneshyari.com</u>