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Abstract

We study the (two-parameter) Segal-Bargmann transform B + on the unitary group Uy, for large N.
Acting on matrix-valued functions that are equivariant under the adjomt action of the group, the transform
has a meaningful limit & ; as N — oo, which can be identified as an operator on the space of complex Lau-
rent polynomials. We introduce the space of trace polynomials, and use it to give effective computational
methods to determine the action of the heat operator, and thus the Segal-Bargmann transform. We prove
several concentration of measure and limit theorems, giving a direct connection from the finite-dimensional
transform B; ; to its limit % ;. We characterize the operator &% ; through its inverse action on the stan-
dard polynomlal basis. Finally, we show that, in the case s = ¢, the limit transform %; ; is the “free Hall
transform” ¢* introduced by Biane.
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1. Introduction

The Segal-Bargmann transform (also known in the physics literature as the Bargmann trans-
form or coherent state transform) is a unitary isomorphism from L? to holomorphic L2. It was
originally introduced by Segal [30-32] and Bargmann [1,2], as a map

Se: LA(RY, yN) — 3L*(CV, y,z/zv)

where ytN is the standard Gaussian heat kernel measure (#)N /2 exp(—%lx|2) dx on RV and
FHL? denotes the subspace of square-integrable holomorphic functions. The transform S; is given
by convolution with the heat kernel, followed by analytic continuation.

In [17], the second author introduced an analog of the Segal-Bargmann transform for
any compact Lie group K. Let Ag denote the Laplace operator over K (determined by an
Ad-invariant inner product on the Lie algebra £ of K), and denote by e28K the corresponding
heat operator. The generalized Segal-Bargmann transform B; maps functions on K to holomor-
phic functions on the complexification K¢ of K, by application of the heat operator and analytic
continuation.
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