

Available online at www.sciencedirect.com

SciVerse ScienceDirect

JOURNAL OF Functional Analysis

Journal of Functional Analysis 263 (2012) 3984-4008

www.elsevier.com/locate/jfa

On the conservativeness and the recurrence of symmetric jump-diffusions

Jun Masamune ^a, Toshihiro Uemura ^b, Jian Wang ^{c,*}

a Department of Mathematics and Statistics, Penn State, Altoona, 3000 Ivyside Park, Altoona, PA 16601, USA
b Department of Mathematics, Faculty of Engineering Science, Kansai University, Suita-shi, Osaka 564-8680, Japan
^c School of Mathematics and Computer Science, Fujian Normal University, 350007, Fuzhou, PR China

Received 3 May 2012; accepted 27 September 2012

Available online 11 October 2012

Communicated by Daniel W. Stroock

Abstract

Sufficient conditions for a symmetric jump-diffusion process to be conservative and recurrent are given in terms of the volume of the state space and the jump kernel of the process. A number of examples are presented to illustrate the optimality of these conditions; in particular, the situation is allowed to be that the state space is topologically disconnected but the particles can jump from a connected component to the other components.

© 2012 Elsevier Inc. All rights reserved.

Keywords: Regular Dirichlet form; Jump process; Integral-derivation property; Conservation property; Recurrence

Contents

1.	Introduction and main results	3985
2.	Preliminaries: the integral-derivation property	3988
3.	Proof of Theorem 1.1: the conservation property	3990
4.	Proof of Theorem 1.2: the recurrence	3997
5.	Examples	3998
	5.1. Sharpness examples	3999

^{*} Corresponding author.

E-mail addresses: jum35@psu.edu (J. Masamune), t-uemura@kansai-u.ac.jp (T. Uemura), jianwang@fjnu.edu.cn (J. Wang).

5.2.	Disconnected space	4000
5.3.	Volume tests	4002
5.4.	A mixed-type Laplacian on graphs	4004
Acknowledg	ments	4007
References .		4007

1. Introduction and main results

Let (X, d, m) be a metric measure space. We assume that every metric ball $B(x, r) = \{z \in X : d(x, z) < r\}$ centered at $x \in X$ with radius r > 0 is pre-compact, and the measure m is a Radon measure with full support. In particular, X is locally compact and separable. Let $(\mathcal{E}, \mathcal{F})$ be a regular symmetric Dirichlet form in $L^2(X; m)$. We denote the extended Dirichlet space of $(\mathcal{E}, \mathcal{F})$ by \mathcal{F}_e , and a quasi-continuous version of $u \in \mathcal{F}_e$ by \tilde{u} . According to the Beurling–Deny theorem, see, e.g., [8, Theorem 3.2.1 and Lemma 4.5.4], we can express $(\mathcal{E}, \mathcal{F})$ as follows

$$\mathcal{E}(u,v) = \mathcal{E}^{(c)}(u,v) + \iint_{x \neq y} (\tilde{u}(x) - \tilde{u}(y)) (\tilde{v}(x) - \tilde{v}(y)) J(dx, dy)$$
$$+ \int_{X} \tilde{u}(x) \tilde{v}(x) k(dx) \quad \text{for any } u, v \in \mathcal{F}_{e},$$

where $(\mathcal{E}^{(c)}, C_0(X) \cap \mathcal{F})$ is a strongly-local symmetric form and $C_0(X)$ is the space of all real-valued continuous functions on X with compact support; J is a symmetric positive Radon measure on the product space $X \times X$ off the diagonal $\{(x, x): x \in X\}$; and k is a positive Radon measure on X.

Let $\mu_{\langle \cdot, \cdot \rangle}$ be a bounded signed measure, see [8, Lemma 3.2.3], such that

$$\mathcal{E}^{(c)}(u,v) = \frac{1}{2}\mu_{\langle u,v\rangle}(X) = \frac{1}{2}\int\limits_{X}\mu_{\langle u,v\rangle}(dx) \quad \text{for } u,v \in \mathcal{F}_e.$$

Throughout the paper, we assume the following set (A) of conditions:

- (A-1) The killing measure *k* does not appear; that is, the corresponding process is *no killing inside*
- (A-2) For each $u, v \in \mathcal{F}_e$, the measure $\mu_{\langle u, v \rangle}$ is absolutely continuous with respect to m. We denote the corresponding Radon–Nikodym density by $\Gamma^{(c)}(u, v)$; namely,

$$\mu_{\langle u,v\rangle}(dx) = \Gamma^{(c)}(u,v)(x) m(dx).$$

(A-3) The jump measure J has a symmetric kernel j(x, dy) over $X \times \mathcal{B}(X)$ such that

$$J(dx, dy) = j(x, dy) m(dx) (= j(y, dx) m(dy) = J(dy, dx)).$$

Download English Version:

https://daneshyari.com/en/article/4590974

Download Persian Version:

https://daneshyari.com/article/4590974

Daneshyari.com