JOURNAL OF Functional Analysis Journal of Functional Analysis 261 (2011) 1145-1203 www.elsevier.com/locate/jfa ## On the hereditary proximity to ℓ_1 S.A. Argyros ^{a,1}, A. Manoussakis ^b, A. Pelczar-Barwacz ^{c,*} - Department of Mathematics, National Technical University of Athens, Athens 15780, Greece Department of Sciences, Technical University of Crete, Chania, Crete, TK 73100, Greece - ^c Institute of Mathematics, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland Received 24 July 2009; accepted 23 April 2011 Available online 17 May 2011 Communicated by K. Ball #### Abstract In the first part of the paper we present and discuss concepts of local and asymptotic hereditary proximity to ℓ_1 . The second part is devoted to a complete separation of the hereditary local proximity to ℓ_1 from the asymptotic one. More precisely for every countable ordinal ξ we construct a separable Hereditarily Indecomposable reflexive space \mathfrak{X}_{ξ} such that every infinite-dimensional subspace of it has Bourgain ℓ_1 -index greater than ω^{ξ} and the space itself has no ℓ_1 -spreading model. © 2011 Elsevier Inc. All rights reserved. Keywords: Bourgain ℓ_1 -index; ℓ_1 -Spreading model; Attractors method #### 1. Introduction Concepts of proximity to a classical ℓ_p (or c_0) space play a significant role to the understanding of the structure of a Banach space. They are categorized as follows: The first one is the global proximity to ℓ_p which simply means that ℓ_p is isomorphic to a subspace Y of X. The local proximity which occurs more frequently, due to J.L. Krivine's theorem [21], is measured through the Bourgain ℓ_p -index [10]. The last concept is the asymptotic proximity that varies from A. Brunel and L. Sucheston ℓ_p -spreading models [11], to ^{*} Corresponding author. *E-mail addresses*: sargyros@math.ntua.gr (S.A. Argyros), amanousakis@isc.tuc.gr (A. Manoussakis), anna.pelczar@im.uj.edu.pl (A. Pelczar-Barwacz). ¹ Research partially supported by ΠΕΒΕ 2009 NTUA Research Program. the asymptotic ℓ_p spaces. The latter class of Banach spaces, introduced by V. Milman and N. Tomczak-Jaegermann in [25], is modelled on B.S. Tsirelson space [31] that answered in negative the famous Banach's problem by showing that global proximity to some ℓ_p is not always possible. It is well known that the hereditary global proximity, i.e. saturation by subspaces isomorphic to ℓ_p , does not imply asymptotic structure of the whole space, see for example [19,18]. If we allow passing to infinite-dimensional subspaces, it is easy to see that the global proximity to ℓ_p is the strongest one followed by the asymptotic one. The local proximity is the weakest among them. It is also known that the three classes are separated for each ℓ_p . Namely there are spaces with arbitrarily large local proximity to ℓ_p but admitting no ℓ_p asymptotic subspace, and similarly there are ℓ_p asymptotic spaces with no subspaces isomorphic to ℓ_p . The present paper is mainly devoted to the separation of the local and asymptotic proximity to ℓ_1 when the first one is hereditarily large. In particular our work is motivated by a result of the third named author stated as follows. **Theorem.** (See [28].) Let X be a separable Banach space and ξ be a countable ordinal. If X is boundedly distortable and has hereditary Bourgain ℓ_1 -index greater than ω^{ξ} then it is saturated by asymptotic ℓ_1^{ξ} spaces. Let's recall that the hereditary Bourgain ℓ_p -index of a Banach space X is the minimum of Bourgain ℓ_p -index of its subspaces. In the sequel by the ℓ_p -index we will mean the Bourgain ℓ_p -index. In view of the above theorem it is natural to ask how critical is the bounded distortion of X for the final conclusion. It is also worth adding that heredity assumptions for the local proximity to ℓ_1 could yield large asymptotic one. In this direction we prove the following **Proposition.** Let (e_n) be a Schauder basis of a Banach space X such that the Bourgain ℓ_1 -tree supported by any subsequence of $(e_n)_{n\in\mathbb{N}}$ has order greater than ω^{ξ} . Then there exists a subsequence generating an ℓ_1^{ξ} -spreading model. Our aim is to show that large hereditary ℓ_1 -structure in a Banach space X does not imply in general any asymptotic one. More precisely the main goal at the present paper is to prove the next **Theorem A.** For every countable ordinal ξ there exists a separable Hereditarily Indecomposable reflexive space \mathfrak{X}_{ξ} with the hereditary ℓ_1 -index greater than ω^{ξ} such that \mathfrak{X}_{ξ} does not admit an ℓ_1 -spreading model. Moreover the dual \mathfrak{X}_{ξ}^* has hereditary c_0 -index greater than ω^{ξ} and does not admit c_0 as a spreading model. The space \mathfrak{X}_{ξ} satisfies the following structural property yielding that its hereditary ℓ_1 index is greater than ω^{ξ} . For any block sequence $(x_n)_n$ of the basis $(e_n)_n$ of \mathfrak{X}_{ξ} there exists a further block $(x_s)_{s\in\mathcal{T}}$ with \mathcal{T} a well-founded tree of order greater than ω^{ξ} such that for each chain s_1,\ldots,s_k in \mathcal{T} , $(x_{s_i})_{i=1}^k$ is C-equivalent to the standard basis $(e_i)_{i=1}^k$ of ℓ_1^k for a universal constant C. To some extent the spaces \mathfrak{X}_{ξ} , $\xi < \omega_1$, are the reflexive analogue of the famous Gowers treespace (cf. [15]) and its variants (cf. [3]). For the construction of \mathfrak{X}_{ξ} we employ the method of attractors, appeared in [8] and extensively used in [3]. The definition of the space \mathfrak{X}_{ξ} requires ### Download English Version: # https://daneshyari.com/en/article/4590981 Download Persian Version: https://daneshyari.com/article/4590981 Daneshyari.com