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Abstract

In the first part of the paper we present and discuss concepts of local and asymptotic hereditary proximity
to �1. The second part is devoted to a complete separation of the hereditary local proximity to �1 from
the asymptotic one. More precisely for every countable ordinal ξ we construct a separable Hereditarily
Indecomposable reflexive space Xξ such that every infinite-dimensional subspace of it has Bourgain �1-
index greater than ωξ and the space itself has no �1-spreading model.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Concepts of proximity to a classical �p (or c0) space play a significant role to the understand-
ing of the structure of a Banach space. They are categorized as follows:

The first one is the global proximity to �p which simply means that �p is isomorphic to
a subspace Y of X. The local proximity which occurs more frequently, due to J.L. Krivine’s
theorem [21], is measured through the Bourgain �p-index [10]. The last concept is the asymp-
totic proximity that varies from A. Brunel and L. Sucheston �p-spreading models [11], to
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the asymptotic �p spaces. The latter class of Banach spaces, introduced by V. Milman and
N. Tomczak-Jaegermann in [25], is modelled on B.S. Tsirelson space [31] that answered in neg-
ative the famous Banach’s problem by showing that global proximity to some �p is not always
possible.

It is well known that the hereditary global proximity, i.e. saturation by subspaces isomorphic
to �p , does not imply asymptotic structure of the whole space, see for example [19,18]. If we
allow passing to infinite-dimensional subspaces, it is easy to see that the global proximity to �p

is the strongest one followed by the asymptotic one. The local proximity is the weakest among
them. It is also known that the three classes are separated for each �p . Namely there are spaces
with arbitrarily large local proximity to �p but admitting no �p asymptotic subspace, and simi-
larly there are �p asymptotic spaces with no subspaces isomorphic to �p . The present paper is
mainly devoted to the separation of the local and asymptotic proximity to �1 when the first one is
hereditarily large. In particular our work is motivated by a result of the third named author stated
as follows.

Theorem. (See [28].) Let X be a separable Banach space and ξ be a countable ordinal. If X is
boundedly distortable and has hereditary Bourgain �1-index greater than ωξ then it is saturated
by asymptotic �

ξ
1 spaces.

Let’s recall that the hereditary Bourgain �p-index of a Banach space X is the minimum of
Bourgain �p-index of its subspaces. In the sequel by the �p-index we will mean the Bourgain
�p-index.

In view of the above theorem it is natural to ask how critical is the bounded distortion of X

for the final conclusion. It is also worth adding that heredity assumptions for the local proximity
to �1 could yield large asymptotic one. In this direction we prove the following

Proposition. Let (en) be a Schauder basis of a Banach space X such that the Bourgain �1-
tree supported by any subsequence of (en)n∈N has order greater than ωξ . Then there exists a
subsequence generating an �

ξ
1-spreading model.

Our aim is to show that large hereditary �1-structure in a Banach space X does not imply in
general any asymptotic one. More precisely the main goal at the present paper is to prove the
next

Theorem A. For every countable ordinal ξ there exists a separable Hereditarily Indecomposable
reflexive space Xξ with the hereditary �1-index greater than ωξ such that Xξ does not admit an
�1-spreading model. Moreover the dual X∗

ξ has hereditary c0-index greater than ωξ and does not
admit c0 as a spreading model.

The space Xξ satisfies the following structural property yielding that its hereditary �1 index
is greater than ωξ . For any block sequence (xn)n of the basis (en)n of Xξ there exists a further
block (xs)s∈T with T a well-founded tree of order greater than ωξ such that for each chain
s1, . . . , sk in T , (xsi )

k
i=1 is C-equivalent to the standard basis (ei)

k
i=1 of �k

1 for a universal con-
stant C.

To some extent the spaces Xξ , ξ < ω1, are the reflexive analogue of the famous Gowers tree-
space (cf. [15]) and its variants (cf. [3]). For the construction of Xξ we employ the method of
attractors, appeared in [8] and extensively used in [3]. The definition of the space Xξ requires
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