

Available online at www.sciencedirect.com

JOURNAL OF Functional Analysis

Journal of Functional Analysis 261 (2011) 1345-1360

www.elsevier.com/locate/jfa

A semi-finite algebra associated to a subfactor planar algebra

A. Guionnet^{a,1}, V. Jones^{b,2}, D. Shlyakhtenko^{c,*,3}

^a UMPA, ENS Lyon, 46 al d'Italie, 69364 Lyon Cedex 07, France
^b Department of Mathematics, UC Berkeley, Berkeley, CA 94720, USA
^c Department of Mathematics, UCLA, Los Angeles, CA 90095, USA

Received 4 May 2011; accepted 6 May 2011

Available online 18 May 2011

Communicated by Alain Connes

Abstract

We canonically associate to any planar algebra two type II_{∞} factors \mathfrak{M}_{\pm} . The subfactors constructed previously by the authors in Guionnet et al. (2010) [6] are isomorphic to compressions of \mathfrak{M}_{\pm} to finite projections. We show that each \mathfrak{M}_{\pm} is isomorphic to an amalgamated free product of type I von Neumann algebras with amalgamation over a fixed discrete type I von Neumann subalgebra. In the finite-depth case, existing results in the literature imply that $\mathfrak{M}_{+} \cong \mathfrak{M}_{-}$ is the amplification a free group factor on a finite number of generators. As an application, we show that the factors M_j constructed in Guionnet et al. (in press) [6] are isomorphic to interpolated free group factors $L(\mathbb{F}(r_j)), r_j = 1 + 2\delta^{-2j}(\delta - 1)I$, where δ^2 is the index of the planar algebra and I is its global index. Other applications include computations of laws of Jones–Wenzl projections.

© 2011 Elsevier Inc. All rights reserved.

Keywords: Von Neumann algebras; Free probability; Subfactors

* Corresponding author.

E-mail addresses: aguionne@umpa.ens-lyon.fr (A. Guionnet), vfr@math.berkeley.edu (V. Jones), shlyakht@math.ucla.edu (D. Shlyakhtenko).

0022-1236/\$ – see front matter © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2011.05.004

¹ Research supported by ANR project ANR-08-BLAN-0311-01.

² Research supported by NSF grant DMS-0856316.

³ Research supported by NSF grants DMS-0555680, DMS-0900776.

1. Introduction

In this paper, we associate a pair of semi-finite von Neumann algebras \mathfrak{M}_{\pm} to a planar algebra \mathcal{P} . The algebras \mathfrak{M}_{\pm} are obtained via the GNS construction from a certain non-unital tracial inductive limit algebra V_{+} which arises canonically from \mathcal{P} . These algebras have an interesting structure, and the paper is mainly devoted to their study.

To state our main application, let \mathcal{P} be a subfactor planar algebra of index δ^2 , and let us denote by $M_k = M_k(\mathcal{P})$ the von Neumann algebra generated in the GNS representation of $(\mathcal{P}, \wedge_k, Tr_k)$ (see Def. 7 and 8 in [6]). We prove:

Theorem 1. Assume that \mathcal{P} is finite-depth with global index I. Then $M_k \cong L(\mathbb{F}(r_k))$ with $r_k = 1 + 2\delta^{-2k}(\delta - 1)I$.

We refer the reader to [9,5] for the definition of global index *I*. If Γ is the principal graph of \mathcal{P} and μ is the Perron–Frobenius eigenvector normalized by $\mu(*) = 1$, then $I = \frac{1}{2} \sum_{v \in \Gamma} \mu(v)^2$. This formula is consistent with the result of Kodiyalam and Sunder in the depth two case [7].

The main step in proving Theorem 1 is to prove that the amplifications of M_k are isomorphic to type Π_{∞} von Neumann algebra \mathfrak{M}_+ or \mathfrak{M}_- (the choice of sign is according to the parity of k). It turns out that each \mathfrak{M}_{\pm} admits a description as a (possibly infinite) free product with amalgamation over a discrete type I von Neumann subalgebra of type I von Neumann algebras. In the finite-depth case, this is sufficient to determine the isomorphism class of \mathfrak{M}_{\pm} using the work of Dykema [1–4].

We note that r_k in the statement of Theorem 1 satisfy $(r_k - 1) = \delta^2(r_{k+1} - 1)$.

We mention also that while this paper was in preparation, Kodiyalam and Sunder have found a different proof that M_k are (in the finite-depth case) isomorphic to interpolated free group factors [8].

We conclude the paper with another application of the isomorphism between M_0 and a compression of \mathfrak{M} . It allows us to recover the random matrix model used in [6] and can be quite useful in random matrix computations (we illustrate this by describing the joint law of Jones–Wenzl idempotents JW).

2. A semi-finite tracial algebra associated to a planar algebra

Let \mathcal{P} be a planar algebra (which will be shortly assumed to be a subfactor planar algebra). We denote by \mathcal{P}_k^{ϵ} , $k = 0, 1, 2, \dots, \epsilon = \pm$, the *k*-th graded component of \mathcal{P} .

For fixed k, ϵ and integers a, b, p satisfying a + b + p = 2k, let $V_{a,b}^{\epsilon}(p)$ be a copy of $\mathcal{P}_{k}^{\epsilon}$; thus by convention tangles acting on elements of $V_{a,b}^{\epsilon}(p)$ are drawn with input disks to have, clockwise from the first string, a strings on the left, p on top, b on the right and so that the top-left corner has shading ϵ . Define the multiplication map

$$\cdot: V_{a,b}^{\epsilon}(p) \times V_{a',b'}^{\epsilon'}(p') \to V_{a,b'}^{\epsilon}(p+p')$$

to be zero unless b = a' and $\epsilon' = (-1)^p \epsilon$ and otherwise by the tangle:

1346

Download English Version:

https://daneshyari.com/en/article/4590988

Download Persian Version:

https://daneshyari.com/article/4590988

Daneshyari.com