A semi-finite algebra associated to a subfactor planar algebra

A. Guionnet ${ }^{\text {a,1 }}$, V. Jones ${ }^{\mathrm{b}, 2}$, D. Shlyakhtenko ${ }^{\mathrm{c}, *, 3}$
${ }^{\text {a }}$ UMPA, ENS Lyon, 46 al d'Italie, 69364 Lyon Cedex 07, France
b Department of Mathematics, UC Berkeley, Berkeley, CA 94720, USA
${ }^{\text {c }}$ Department of Mathematics, UCLA, Los Angeles, CA 90095, USA

Received 4 May 2011; accepted 6 May 2011
Available online 18 May 2011
Communicated by Alain Connes

Abstract

We canonically associate to any planar algebra two type II_{∞} factors $\mathfrak{M}_{ \pm}$. The subfactors constructed previously by the authors in Guionnet et al. (2010) [6] are isomorphic to compressions of $\mathfrak{M}_{ \pm}$to finite projections. We show that each $\mathfrak{M}_{ \pm}$is isomorphic to an amalgamated free product of type I von Neumann algebras with amalgamation over a fixed discrete type I von Neumann subalgebra. In the finite-depth case, existing results in the literature imply that $\mathfrak{M}_{+} \cong \mathfrak{M}_{-}$is the amplification a free group factor on a finite number of generators. As an application, we show that the factors M_{j} constructed in Guionnet et al. (in press) [6] are isomorphic to interpolated free group factors $L\left(\mathbb{F}\left(r_{j}\right)\right.$), $r_{j}=1+2 \delta^{-2 j}(\delta-1) I$, where δ^{2} is the index of the planar algebra and I is its global index. Other applications include computations of laws of Jones-Wenzl projections.

© 2011 Elsevier Inc. All rights reserved.
Keywords: Von Neumann algebras; Free probability; Subfactors

[^0]
1. Introduction

In this paper, we associate a pair of semi-finite von Neumann algebras $\mathfrak{M}_{ \pm}$to a planar algebra \mathcal{P}. The algebras $\mathfrak{M}_{ \pm}$are obtained via the GNS construction from a certain non-unital tracial inductive limit algebra V_{+}which arises canonically from \mathcal{P}. These algebras have an interesting structure, and the paper is mainly devoted to their study.

To state our main application, let \mathcal{P} be a subfactor planar algebra of index δ^{2}, and let us denote by $M_{k}=M_{k}(\mathcal{P})$ the von Neumann algebra generated in the GNS representation of ($\mathcal{P}, \wedge_{k}, T r_{k}$) (see Def. 7 and 8 in [6]). We prove:

Theorem 1. Assume that \mathcal{P} is finite-depth with global index I. Then $M_{k} \cong L\left(\mathbb{F}\left(r_{k}\right)\right)$ with $r_{k}=$ $1+2 \delta^{-2 k}(\delta-1) I$.

We refer the reader to $[9,5]$ for the definition of global index I. If Γ is the principal graph of \mathcal{P} and μ is the Perron-Frobenius eigenvector normalized by $\mu(*)=1$, then $I=$ $\frac{1}{2} \sum_{v \in \Gamma} \mu(v)^{2}$. This formula is consistent with the result of Kodiyalam and Sunder in the depth two case [7].

The main step in proving Theorem 1 is to prove that the amplifications of M_{k} are isomorphic to type II_{∞} von Neumann algebra \mathfrak{M}_{+}or \mathfrak{M}_{-}(the choice of sign is according to the parity of k). It turns out that each $\mathfrak{M}_{ \pm}$admits a description as a (possibly infinite) free product with amalgamation over a discrete type I von Neumann subalgebra of type I von Neumann algebras. In the finite-depth case, this is sufficient to determine the isomorphism class of $\mathfrak{M}_{ \pm}$using the work of Dykema [1-4].

We note that r_{k} in the statement of Theorem 1 satisfy $\left(r_{k}-1\right)=\delta^{2}\left(r_{k+1}-1\right)$.
We mention also that while this paper was in preparation, Kodiyalam and Sunder have found a different proof that M_{k} are (in the finite-depth case) isomorphic to interpolated free group factors [8].

We conclude the paper with another application of the isomorphism between M_{0} and a compression of \mathfrak{M}. It allows us to recover the random matrix model used in [6] and can be quite useful in random matrix computations (we illustrate this by describing the joint law of JonesWenzl idempotents $J W$).

2. A semi-finite tracial algebra associated to a planar algebra

Let \mathcal{P} be a planar algebra (which will be shortly assumed to be a subfactor planar algebra). We denote by $\mathcal{P}_{k}^{\epsilon}, k=0,1,2, \ldots, \epsilon= \pm$, the k-th graded component of \mathcal{P}.

For fixed k, ϵ and integers a, b, p satisfying $a+b+p=2 k$, let $V_{a, b}^{\epsilon}(p)$ be a copy of $\mathcal{P}_{k}^{\epsilon}$; thus by convention tangles acting on elements of $V_{a, b}^{\epsilon}(p)$ are drawn with input disks to have, clockwise from the first string, a strings on the left, p on top, b on the right and so that the top-left corner has shading ϵ. Define the multiplication map

$$
\therefore V_{a, b}^{\epsilon}(p) \times V_{a^{\prime}, b^{\prime}}^{\epsilon^{\prime}}\left(p^{\prime}\right) \rightarrow V_{a, b^{\prime}}^{\epsilon}\left(p+p^{\prime}\right)
$$

to be zero unless $b=a^{\prime}$ and $\epsilon^{\prime}=(-1)^{p} \epsilon$ and otherwise by the tangle:

https://daneshyari.com/en/article/4590988

Download Persian Version:

https://daneshyari.com/article/4590988

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: aguionne@umpa.ens-lyon.fr (A. Guionnet), vfr@ math.berkeley.edu (V. Jones), shlyakht@math.ucla.edu (D. Shlyakhtenko).
 1 Research supported by ANR project ANR-08-BLAN-0311-01.
 2 Research supported by NSF grant DMS-0856316.
 ${ }^{3}$ Research supported by NSF grants DMS-0555680, DMS-0900776.

