

Available online at www.sciencedirect.com

JOURNAL OF Functional Analysis

Journal of Functional Analysis 260 (2011) 2767-2814

www.elsevier.com/locate/jfa

Spectral theory for commutative algebras of differential operators on Lie groups

Alessio Martini

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy Received 29 July 2010; accepted 14 January 2011 Available online 1 February 2011 Communicated by P. Delorme

Abstract

The joint spectral theory of a system of pairwise commuting self-adjoint left-invariant differential operators L_1, \ldots, L_n on a connected Lie group G is studied, under the hypothesis that the algebra generated by them contains a "weighted subcoercive operator" of ter Elst and Robinson (1998) [52]. The joint spectrum of L_1, \ldots, L_n in every unitary representation of G is characterized as the set of the eigenvalues corresponding to a particular class of (generalized) joint eigenfunctions of positive type of L_1, \ldots, L_n . Connections with the theory of Gelfand pairs are established in the case L_1, \ldots, L_n generate the algebra of K-invariant left-invariant differential operators on G for some compact subgroup K of Aut(G). © 2011 Elsevier Inc. All rights reserved.

Keywords: Functional calculus; Differential operators; Lie groups; Joint spectrum; Eigenfunction expansions; Representation theory; Gelfand pairs

1. Introduction

Let L_1, \ldots, L_n be pairwise commuting smooth linear differential operators on a smooth manifold X, which are formally self-adjoint with respect to some smooth measure μ . Do these operators admit a joint functional calculus on $L^2(X, \mu)$? In that case, what is the relationship between the joint L^2 spectrum of L_1, \ldots, L_n and their joint smooth (possibly non- L^2) eigenfunctions on X?

A joint functional calculus for L_1, \ldots, L_n is given, via spectral integration, by a *joint spectral* resolution E, i.e., a resolution of the identity of $L^2(X, \mu)$ on \mathbb{R}^n such that

0022-1236/\$ – see front matter @ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2011.01.008

E-mail address: a.martini@sns.it.

$$\int_{\mathbb{R}^n} \lambda_j \, dE(\lambda_1,\ldots,\lambda_n)$$

is a self-adjoint extension of L_j for j = 1, ..., n. Existence and uniqueness of E are related to the so-called "domain problems", such as essential self-adjointness of $L_1, ..., L_n$ and strong commutativity of their self-adjoint extensions.

Once a joint spectral resolution E is fixed, the theory of eigenfunction expansions (see, e.g., [5,39]) yields the existence, for E-almost every $\lambda = (\lambda_1, \ldots, \lambda_n)$ in the joint L^2 spectrum $\Sigma = \sup E$ of L_1, \ldots, L_n , of a corresponding generalized joint eigenfunction ϕ , which (under some hypoellipticity hypothesis on L_1, \ldots, L_n) belongs to the space $\mathcal{E}(X)$ of smooth functions on X and satisfies

$$L_j \phi = \lambda_j \phi \quad \text{for } j = 1, \dots, n.$$
 (1.1)

However, from the general theory, neither it is clear for which $\lambda \in \Sigma$ there does exist a corresponding smooth eigenfunction ϕ , nor for which $\phi \in \mathcal{E}(X)$ satisfying (1.1) the corresponding λ does belong to Σ .

In this paper, we restrict to the case of X = G being a connected Lie group, with right Haar measure μ , and left-invariant differential operators L_1, \ldots, L_n . In this context, the problem of existence and uniqueness of a joint spectral resolution can be stated for the operators $d\varpi(L_1), \ldots, d\varpi(L_n)$ in every unitary representation ϖ of G — the case of the operators L_1, \ldots, L_n on $L^2(G)$ corresponding to the (right) regular representation of G — with a possibly different joint spectrum Σ_{ϖ} for each representation ϖ .

Via techniques due to Nelson and Stinespring [45], we show in Section 3.1 that a sufficient condition for the essential self-adjointness and the existence of a joint spectral resolution in every unitary representation is that the algebra generated by L_1, \ldots, L_n contains a *weighted subcoercive operator*. This class of hypoelliptic left-invariant differential operators, defined by ter Elst and Robinson [52] in terms of a *homogeneous contraction* of the Lie algebra g of G, is large enough to contain positive elliptic operators, sublaplacians and positive Rockland operators (see Section 2 for details).

Under the same hypotheses on L_1, \ldots, L_n , we prove that *every* element of the joint spectrum Σ corresponds to a joint (smooth) eigenfunction ϕ of L_1, \ldots, L_n which is a function of *positive type* on *G*, i.e., of the form

$$\phi(x) = \langle \pi(x)v, v \rangle \tag{1.2}$$

for some unitary representation π of G on a Hilbert space \mathcal{H} and some cyclic vector $v \in \mathcal{H} \setminus \{0\}$. More precisely, in Section 4 we show that:

- (a) for every unitary representation ϖ of G, Σ_{ϖ} coincides with the set of the eigenvalues relative to the joint eigenfunctions of L_1, \ldots, L_n of the form (1.2) with π (irreducible and) weakly contained in ϖ ;
- (b) if G is amenable, then Σ coincides with the set of the eigenvalues relative to *all* the joint eigenfunctions of positive type;
- (c) if $L^1(G)$ is a symmetric Banach *-algebra, then Σ coincides with the set of the eigenvalues relative to all the *bounded* joint eigenfunctions.

Download English Version:

https://daneshyari.com/en/article/4591034

Download Persian Version:

https://daneshyari.com/article/4591034

Daneshyari.com