

Available online at www.sciencedirect.com

JOURNAL OF Functional Analysis

Journal of Functional Analysis 263 (2012) 1744-1765

www.elsevier.com/locate/jfa

Reducing subspaces for analytic multipliers of the Bergman space [☆]

Ronald G. Douglas^a, Mihai Putinar^b, Kai Wang^{c,*}

^a Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
^b Department of Mathematics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
^c School of Mathematical Sciences, Fudan University, Shanghai 200433, PR China

Received 13 March 2012; accepted 4 June 2012

Available online 19 June 2012

Communicated by D. Voiculescu

Abstract

In Douglas et al. (2011) [4] some incisive results are obtained on the structure of the reducing subspaces for the multiplication operator M_{ϕ} by a finite Blaschke product ϕ on the Bergman space on the unit disk. In particular, the linear dimension of the commutant, $\mathcal{A}_{\phi} = \{M_{\phi}, M_{\phi}^*\}'$, is shown to equal the number of connected components of the Riemann surface, $\phi^{-1} \circ \phi$. Using techniques from Douglas et al. (2011) [4] and a uniformization result that expresses ϕ as a holomorphic covering map in a neighborhood of the boundary of the disk, we prove that \mathcal{A}_{ϕ} is commutative, and moreover, that the minimal reducing subspaces are pairwise orthogonal. Finally, an analytic/arithmetic description of the minimal reducing subspaces is also provided, along with the taxonomy of the possible structures of the reducing subspaces in case ϕ has eight zeros. These results have implications in both operator theory and the geometry of finite Blaschke products.

© 2012 Elsevier Inc. All rights reserved.

Keywords: Reducing subspace; Bergman space; Finite Blaschke product

Corresponding author.

0022-1236/\$ – see front matter © 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jfa.2012.06.008

^{*} The second author was supported by NSF (DMS 1001071) and the workshop in Analysis and Probability at Texas A&M University. The third author was supported by NSFC, the Department of Mathematics at Texas A&M University and Laboratory of Mathematics for Nonlinear Science at Fudan University.

E-mail addresses: rdouglas@math.tamu.edu (R.G. Douglas), mputinar@math.ucsb.edu (M. Putinar), kwang@fudan.edu.cn (K. Wang).

1. Introduction

The present article is a continuation of [4] and a series of recent related works, such as [5,6,8]. Our aim is to classify the reducing subspaces of analytic Toeplitz operators with a rational, inner symbol acting on the Bergman space of the unit disk. While a similar study in the case of the Hardy space was completed a long time ago (see [3,12,13]), investigation of the Bergman space setting was started only a few years ago. Not surprisingly, the structure and relative position of these reducing subspaces in the Bergman space reveal a rich geometric (Riemann surface) picture directly dependent on the rational symbol of the Toeplitz operator.

We start by recalling a few basic facts and some terminology. The Bergman space $L_a^2(\mathbb{D})$ is the space of holomorphic functions on \mathbb{D} which are square-integrable with respect to the Lebesgue measure dm on \mathbb{D} . For a bounded holomorphic function ϕ on the unit disk, the multiplication operator, $M_{\phi} : L_a^2(\mathbb{D}) \to L_a^2(\mathbb{D})$, is defined by

$$M_{\phi}(h) = \phi h, \quad h \in L^2_a(\mathbb{D}).$$

The Toeplitz operator T_{ϕ} on $L^2_{\alpha}(\mathbb{D})$ with symbol $\phi \in L^{\infty}(\mathbb{D})$ acts as

$$T_{\phi}(h) = P(\phi h), \quad h \in L^2_a,$$

where P is the orthogonal projection from $L^2(\mathbb{D})$ to $L^2_a(\mathbb{D})$. Note that $T_{\phi} = M_{\phi}$ whenever ϕ is holomorphic.

An invariant subspace \mathcal{M} for M_{ϕ} is a closed subspace of $L^2_a(\mathbb{D})$ satisfying $\phi \mathcal{M} \subseteq \mathcal{M}$. If, in addition, $M^*_{\phi} \mathcal{M} \subseteq \mathcal{M}$, we call \mathcal{M} a reducing subspace of M_{ϕ} . We say \mathcal{M} is a minimal reducing subspace if there is no nontrivial reducing subspace for M_{ϕ} contained in \mathcal{M} . The study of invariant subspaces and reducing subspaces for various classes of linear operators has inspired much deep research and prompted many interesting problems. Even for the multiplication operator M_z , the lattice of invariant subspaces of $L^2_a(\mathbb{D})$ is huge and its order structure remains a mystery. Progress in understanding the lattice of reducing subspaces of M_{ϕ} was only recently made, and only in the case of inner function symbols [4–8,10,11,14].

Let $\{M_{\phi}\}' = \{X \in \mathscr{L}(L_a^2(\mathbb{D})): M_{\phi}X = XM_{\phi}\}\$ be the commutant algebra of M_{ϕ} . The problem of classifying the reducing subspaces of M_{ϕ} is equivalent to finding the projections in $\{M_{\phi}\}'$. This classification problem in the case of the Hardy space was the motivation of the highly original works by Thomson and Cowen (see [3,12,13]). They used the Riemann surface of $\phi^{-1} \circ \phi$ as a basis for the description of the commutant of M_{ϕ} acting on the Hardy space. A notable fact for our study is that inner function symbols played a dominant role in their studies. In complete analogy, in the Bergman space $L_a^2(\mathbb{D})$ framework, one can essentially use the same proof to show that for a "nice" analytic function f, there exists a finite Blaschke product ϕ such that $\{M_f\}' = \{M_{\phi}\}'$. Therefore, the structure of the reducing subspaces of the multiplier M_f on the Bergman space of the disk is the same as that for M_{ϕ} .

Zhu showed in [14] that for each Blaschke product of order 2, there exist exactly 2 different minimal reducing subspaces of M_{ϕ} . This result also appeared in [10]. Zhu also conjectured in [14] that M_{ϕ} has exactly *n* distinct minimal reducing subspaces for a Blaschke product ϕ of order *n*. The results in [8] disproved Zhu's conjecture, and the authors raised a modification in which M_{ϕ} was conjectured to have at most *n* distinct minimal reducing subspaces for a Blaschke product ϕ of order *n*. Some partial results on this conjecture were obtained in [5,8,11]. These authors proved the finiteness result in case $n \leq 6$, each using a different method. A notable result Download English Version:

https://daneshyari.com/en/article/4591061

Download Persian Version:

https://daneshyari.com/article/4591061

Daneshyari.com