

Available online at www.sciencedirect.com

JOURNAL OF Functional Analysis

Journal of Functional Analysis 259 (2010) 3080-3114

www.elsevier.com/locate/jfa

Schatten-von Neumann properties in the Weyl calculus

Ernesto Buzano^a, Joachim Toft^{b,*}

^a Department of Mathematics, University of Torino, Italy ^b Department of Computer Science, Physics and Mathematics, Linnaeus University, Växjö, Sweden

Received 9 April 2009; accepted 31 August 2010

Available online 16 September 2010

Communicated by C. Kenig

Abstract

Let $Op_t(a)$, for $t \in \mathbf{R}$, be the pseudo-differential operator

$$f(x) \mapsto (2\pi)^{-n} \iint a\big((1-t)x + ty, \xi\big) f(y) e^{i\langle x-y,\xi\rangle} \, dy \, d\xi$$

and let \mathscr{I}_p be the set of Schatten–von Neumann operators of order $p \in [1, \infty]$ on L^2 . We are especially concerned with the Weyl case (i.e. when t = 1/2). We prove that if m and g are appropriate metrics and weight functions respectively, h_g is the Planck's function, $h_g^{k/2}m \in L^p$ for some $k \ge 0$ and $a \in S(m, g)$, then $\mathsf{Op}_t(a) \in \mathscr{I}_p$, iff $a \in L^p$. Consequently, if $0 \le \delta < \rho \le 1$ and $a \in S_{\rho,\delta}^r$, then $\mathsf{Op}_t(a)$ is bounded on L^2 , iff $a \in L^\infty$.

© 2010 Elsevier Inc. All rights reserved.

Keywords: Hörmander symbols; Schatten-von Neumann classes; Embeddings; Necessary conditions; Sufficient conditions

0. Introduction

The aim of the paper is to continue the discussions in [10,12,26] on general continuity and compactness properties for pseudo-differential operators, especially for Weyl operators, with smooth symbols which belong to certain Hörmander classes. We are especially focused on find-

* Corresponding author.

0022-1236/\$ – see front matter $\hfill \ensuremath{\mathbb{C}}$ 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2010.08.021

E-mail addresses: ernesto.buzano@unito.it (E. Buzano), joachim.toft@lnu.se (J. Toft).

ing necessary and sufficient conditions on particular symbols in order for the corresponding pseudo-differential operators should be Schatten–von Neumann operators of certain degrees.

If V is a real vector space of finite dimension n, V' its dual space, $t \in \mathbf{R}$ is fixed and $a \in \mathscr{S}'(V \times V')$ (we use the same notation for the usual functions and distribution spaces as in [18]), then the pseudo-differential operator $Op_t(a)$ of a is the continuous linear map from $\mathscr{S}(V)$ to $\mathscr{S}'(V)$ defined by

$$\mathsf{Op}_{t}(a)f(x) = (2\pi)^{-n} \iint_{V \times V'} a\big((1-t)x + ty, \xi\big)f(y)e^{i\langle x-y,\xi \rangle} \, dy \, d\xi.$$
(0.1)

(In the case when *a* is not an integrable function, $Op_t(a)$ is interpreted as the operator with Schwartz kernel equal to $(2\pi)^{-n/2} \mathscr{F}_2^{-1} a((1-t)x + ty, x - y)$, where $\mathscr{F}_2 U(x, \xi)$ denotes the partial Fourier transform \mathscr{F} on U(x, y) with respect to the second variable. Here \mathscr{F} is the Fourier transform which takes the form

$$\mathscr{F}f(\xi) = \widehat{f}(\xi) = (2\pi)^{-n/2} \int f(x)e^{-i\langle x,\xi\rangle} dx, \qquad (0.2)$$

when $f \in \mathscr{S}(V)$. See also Section 18.5 in [18].) The operator $Op_{1/2}(a)$ is the Weyl operator of *a*, and is denoted by $Op^w(a)$. (See (0.1)' in Section 1.)

A family of symbol classes, which appears in several situations, concerns $S_{\rho,\delta}^r(\mathbf{R}^{2n})$, for $r, \rho, \delta \in \mathbf{R}$, which consists of all smooth functions *a* on \mathbf{R}^{2n} such that

$$\left|\partial_x^{\alpha}\partial_{\xi}^{\beta}a(x,\xi)\right| \leqslant C_{\alpha,\beta}\langle\xi\rangle^{r+|\alpha|\delta-|\beta|\rho}.$$

Here $\langle \xi \rangle = (1+|\xi|^2)^{1/2}$. By letting $s_{t,\infty}$ be the set of all $a \in \mathscr{S}'$ such that the definition of $Op_t(a)$ extends to a continuous operator on L^2 , the following is a consequence of Theorem 18.1.11 and the comments on page 94 in [18]: Assume that $0 \leq \delta \leq \rho \leq 1$ and $\delta < 1$. Then $S_{\rho,\delta}^r \subseteq s_{t,\infty}$ if and only if $r \leq 0$. The latter equivalence can also be formulated as

$$S^r_{\rho,\delta} \subseteq s_{t,\infty} \quad \Longleftrightarrow \quad S^r_{\rho,\delta} \subseteq L^{\infty}.$$
 (0.3)

A similar property holds for any "reasonable" family of symbol classes. This is a consequence of the investigations in [2,3,16,18]. For example, in [16,18], Hörmander introduces a family of symbol classes, denoted by S(m, g), which is parameterized by the weight function m and the Riemannian metric g. (See Section 1 for strict definition.) By choosing m and g in appropriate ways, it follows that most of those reasonable symbol classes can be obtained, e.g. $S_{\rho,\delta}^r$ is obtained in such way. If m and g are appropriate, then (0.3) is generalized into:

$$S(m,g) \subseteq s_{t,\infty} \iff S(m,g) \subseteq L^{\infty}.$$
 (0.3)'

(Here we remark that important contributions for improving the calculus on S(m, g) can be found in [6–9]. For example in [7], Bony extends parts of the theory to a family of symbol classes which contains any S(m, g) when m and g are appropriate.)

In [10,26], the equivalence (0.3)' is extended in such way that it involves Schatten–von Neumann properties. More precisely, let $s_{t,p}(V \times V')$ be the set of all $a \in \mathscr{S}'(V \times V')$ such that $Op_t(a)$ belongs to \mathscr{I}_p , the set of Schatten–von Neumann operators of order $p \in [1, \infty]$ on Download English Version:

https://daneshyari.com/en/article/4591095

Download Persian Version:

https://daneshyari.com/article/4591095

Daneshyari.com