
Improving reliability of cooperative concurrent systems with exception
flow analysis

Fernando Castor Filho a,*, Alexander Romanovsky b, Cecília Mary F. Rubira c

a Informatics Center, Federal University of Pernambuco, Av. Prof. Lus Freire s/n, 50740-540 Recife, PE, Brazil
b School of Computing Science, Newcastle University, Newcastle NE1 7RU, UK
c Institute of Computing, State University of Campinas, P.O. Box 6176, 13084-971 Campinas, SP, Brazil

a r t i c l e i n f o

Article history:
Received 2 January 2008
Received in revised form 3 December 2008
Accepted 8 December 2008
Available online 24 December 2008

Keywords:
Exception handling
Coordinated error recovery
Verification
B method
Alloy

a b s t r a c t

Developers of fault-tolerant distributed systems need to guarantee that fault tolerance mechanisms they
build are in themselves reliable. Otherwise, these mechanisms might in the end negatively affect overall
system dependability, thus defeating the purpose of introducing fault tolerance into the system. To
achieve the desired levels of reliability, mechanisms for detecting and handling errors should be devel-
oped rigorously or formally. We present an approach to modeling and verifying fault-tolerant distributed
systems that use exception handling as the main fault tolerance mechanism. In the proposed approach, a
formal model is employed to specify the structure of a system in terms of cooperating participants that
handle exceptions in a coordinated manner, and coordinated atomic actions serve as representatives of
mechanisms for exception handling in concurrent systems. We validate the approach through two case
studies: (i) a system responsible for managing a production cell, and (ii) a medical control system. In both
systems, the proposed approach has helped us to uncover design faults in the form of implicit assump-
tions and omissions in the original specifications.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Applications that could potentially endanger human lives or
lead to great financial losses are usually made fault-tolerant
(Anderson and Lee, 1990) so that they are capable of providing their
intended service, even if only partially, when errors occur. Fault-tol-
erant systems include mechanisms for detecting errors in their
states and recovering from them. There are two main types of error
recovery (Anderson and Lee, 1990): backward and forward. The for-
mer is based on rolling a system back to its previous correct state
and generally uses either diversely implemented software or sim-
ple retry; the latter involves transforming the system into any cor-
rect state, is typically application-specific and relies on an
exception-handling mechanism (Cristian, 1989; Goodenough,
1975).

Usually, a significant part of the system code is devoted to error
detection and handling (Cristian, 1989; Weimer and Necula, 2004).
Cristian (1989) claimed that, for telephone switching applications,
this often amounted to more than two thirds of the overall system
code. A more recent study (Weimer and Necula, 2004) of a set of
open-source applications written in Java discovered that between

1% and 5% of the program text consisted of exception handlers
(catch blocks) and clean-up actions (finally blocks). In another
study (Reimer and Srinivasan, 2003), focusing on five large-scale
applications based on the Java Enterprise Edition (Bodoff, 2004)
platform, the ratio of the number of exception handlers to that of
operations in each application varied between 0.058 and 1.79. Fi-
nally, some of us have conducted yet another study (Castor Filho
et al., 2006), involving four applications. Two of them were pro-
duced in industry and two in academia. In this case, the ratio of
the number of handlers to that of operations ranged from 0.099
to 0.208.

In spite of the pervasiveness of error detection and handling
code, it is usually the least understood, tested or documented
(Cristian, 1989) in a system. This is mainly due to the tendency
among developers to focus on the normal activity of applications
and only deal with the code responsible for error detection and
handling at the implementation phase. What is more, there are
other issues that aggravate this situation in distributed systems,
such as the high cost of reaching an agreement, the lack of a global
view on the system state, multiple concurrent errors, difficulties in
ensuring error isolation, etc. All of these factors complicate the
development of reliable systems in general and of mechanisms
that make them reliable in particular. The overall result is that
the parts of a system responsible for making it reliable are usually
the source of design faults (Cristian, 1989; Reimer and Srinivasan,
2003; Weimer and Necula, 2004).

0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2008.12.015

* Corresponding author. Tel.: +55 81 92251458.
E-mail addresses: fcastor@acm.org (F. Castor Filho), alexander.romanovsky@

newcastle.ac.uk (A. Romanovsky), cmrubira@ic.unicamp.br (C.M.F. Rubira).

The Journal of Systems and Software 82 (2009) 874–890

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss

mailto:fcastor@acm.org
mailto:alexander.romanovsky@ newcastle.ac.uk
mailto:alexander.romanovsky@ newcastle.ac.uk
mailto:cmrubira@ic.unicamp.br
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


For the desired levels of reliability to be achieved in a system,
error detecting and handling mechanisms should be systematically
applied from the early phases of development (Rubira et al., 2005).
Moreover, the construction of these fault tolerance mechanisms
should follow a rigorous or formal development methodology (Ber-
nardeschi et al., 2002). In this manner, these mechanisms are made
more reliable and do not introduce new faults into the system.

1.1. Problem

The concept of coordinated atomic (CA) actions (Xu et al., 1995)
was developed by combining distributed transactions and atomic
actions. The latter are used to control cooperative concurrency
and to implement exception handling (Campbell and Randell,
1986), whereas the former (Gray and Reuter, 1993) are used to
maintain the consistency of resources shared by competing ac-
tions. CA actions function as exception-handling contexts for coop-
erative systems, and exceptions raised in an action are handled
cooperatively by all of its participants. If two or more exceptions
are concurrently raised, an exception resolution mechanism (Camp-
bell and Randell, 1986) is employed to identify an exception that
represents all the exceptions raised concurrently (a resolved excep-
tion) in order to handle it. Many case studies (Beder et al., 2000;
Romanovsky et al., 2003; Xu et al., 2002; Zorzo et al., 1999) have
shown that CA actions are a powerful and useful tool for structur-
ing large distributed fault-tolerant systems. In this paper, we view
CA actions as representative of mechanisms for exception handling
in distributed systems.

In order for CA actions to be applicable in constructing complex
real-world systems with strict dependability requirements, soft-
ware development based on CA actions needs to be supported with
rigorous models, techniques, and tools. Several approaches have
been proposed to formalize the CA action concept aiming to either
offer a more complete and rigorous description of the concept (Va-
chon and Guelfi, 2000) or to verify CA action-based designs (Xu
et al., 2002). However, there is an important aspect of CA actions
that has not been properly addressed by existing work, and that
is coordinated exception handling. This is surprising, since excep-
tion-handling complements other techniques in improving reli-
ability, such as atomic transactions, and promotes the
implementation of specialized and sophisticated error recovery
measures. Moreover, in some distributed applications, a roll back
is not possible or is prohibitively expensive. In this scenario, excep-
tion handling may be the only sensible choice available.

Some authors (Buhr and Mok, 2000) claim that mechanisms for
involving multiple participants in order to cooperatively handle
exceptions are difficult for both implementation and use. We be-
lieve, however, that programmers will make more mistakes in an
ad hoc implementation of cooperative exception handling than in
applying well-defined mechanisms provided by such general
frameworks as CA actions. There is thus a need for techniques
and tools that would mitigate the inherent complexity of exception
handling in a concurrent setting and help developers in specifying
and designing systems that make use of this feature.

In this paper, we examine the problem of specifying a CA ac-
tion-based design in a way that would allow automatic verification
of whether it exhibits certain properties that are relevant to coor-
dinated exception handling. Our aim is to understand what would
be required of modeling exception propagation and handling in
this1 design. Comprehension and documentation of exception
propagation in non-concurrent software systems is by itself a com-
plex issue and an active research area (Cacho et al., 2008,; Castor
Filho et al., 2006; Fu and Ryder, 2007; Jiang et al., 2004; Robillard
and Murphy, 2003). Concurrency is a serious complicating factor
for exception propagation. In CA action-based design, a participant
can not only raise and handle exceptions, but also spawn new ac-

tions that are, themselves, exception-handling contexts involving
multiple participants. What further aggravates matters is that it
is possible for two or more exceptions to be concurrently raised in-
side an action. A model of actions and their participants must con-
template every possible combination of exceptions or, at least,
explicitly point out combinations that cannot happen in practice.
Moreover, it should make it possible to specify how participants
react when faced with different sets of concurrently raised excep-
tions. Finally, since exception handling is closely related to action
structuring, it should also model the nesting and composition
(Romanovsky et al., 2003) of CA actions and how these affect
exception propagation and handling.

1.2. Proposed approach

In this paper, we present an approach to modeling CA action-
based design that makes it possible to automatically verify these
models using a constraint solver. The main component of the pro-
posed approach is a formal model of CA actions that specifies the
structuring of a system in terms of actions, as well as information
relevant to exception flow amongst these actions. This model can
be directly specified using well-known specification languages,
such as Alloy (Jackson, 2002) or B (Abrial, 1996), and automatically
verified using tool sets associated with them. The proposed ap-
proach makes it possible to check whether a CA action-based soft-
ware system satisfies several key properties.

This paper is organized as follows. The next section provides
some background on CA actions, the B method and notation, and
the Alloy specification language. Section 3 presents the proposed
approach, including a description of the generic CA action model
and some of the properties that it helps to verify. Section 4 formal-
izes the basic properties of the generic CA action model. We then
illustrate the feasibility and usefulness of the proposed approach
in two case studies. Section 6 reviews related work, and the last
one sums up the paper and outlines directions for future work.

2. Background

In order to present our approach, we need to introduce several
topics first. We begin with CA actions, a scheme for building fault-
tolerant concurrent systems that employ exception handling. We
then proceed to describe two formal specification languages, Alloy
(Jackson, 2002) and B (Abrial, 1996). These languages are examples
of formal notations that can be used in combination with the ap-
proach proposed here in order to specify and verify some proper-
ties of fault-tolerant distributed systems based on CA actions.
Both are similar to Z (Woodcock and Davies, 1996), declarative in
nature, and supported by automated verification tools. It is impor-
tant to stress, however, that they were designed with very different
goals in mind.

2.1. Coordinated atomic actions

CA actions are a unified scheme for coordinating complex con-
current activities and supporting error recovery among multiple
interacting components. It helps to decrease the overall system
complexity and simplify development by structuring the system
in terms of nested recovery units. A CA action is designed as a
set of roles cooperating inside it and a set of resources accessed
by these roles. An action starts when its roles are taken by partic-
ipants. A participant abstracts away the underlying unit of concur-
rency, i.e., it can be a process, a thread, an active object, or any
similar mechanism. In the course of the action, participants can ac-
cess external resources. The latter must be accessed according to
the ACID (atomicity, consistency, isolation, durability) properties

F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890 875



Download English Version:

https://daneshyari.com/en/article/459112

Download Persian Version:

https://daneshyari.com/article/459112

Daneshyari.com

https://daneshyari.com/en/article/459112
https://daneshyari.com/article/459112
https://daneshyari.com

