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Abstract

Let d be a given positive integer and let {R; }0‘1:] denote the collection of Riesz transforms on RY. For
any K > 2/ we determine the optimal constant L such that the following holds. For any locally integrable
Borel function f on RY, any Borel subset A of R4 and any j =1,2,...,d we have

/!ij(x)ldx<K/w(}f(x)|)dx+|A|-L.
A R4

Here ¥ (t) = (t + 1) log(t + 1) — ¢ for t > 0. The proof is based on probabilistic techniques and the existence
of certain special harmonic functions. As a by-product, we obtain related sharp estimates for the so-called
re-expansion operator, an important object in some problems of mathematical physics.
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1. Introduction

One of the most basic examples of Calderén—Zygmund singular integrals in R? is the collec-
tion of Riesz transforms [20]:
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Ryf) = L) [ xi= dy, j=1.2,...d
.]f(x)_r[(d_,’_l)/z |)C |d+1f(y) )’7 J_ 3 Sy ey Uy
R4

where the integrals are supposed to exist in the sense of Cauchy principal values. In the particular
case d = 1, the family consists of only one element, the Hilbert transform H on R. Alternatively,
R; can be defined as the Fourier multiplier with the symbol —i&;/|&], & € R?\ {0}; that is, we
have the following relation between the Fourier transforms of f and R; f:

Rif&) =—i-LfE), foreeRI\{0). (1)

It has been long of interest to study various norms of these operators. The classical result of
M. Riesz [19] states that # is a bounded operator on L” (R) if and only if 1 < p < co. Gokhberg
and Krupnik [7] derived the precise value of the norm || H||z»(Rr)— Lr®) for p = % k=1,2,...,
and Pichorides [18] determined the norms for the remaining p: we have

an(f) ifl<p<2,

D —SLP :C = . 2
IHllLr®)—»Lr® =Cp {cot(z”—p itp>2. 2

Using the so-called method of rotations, Iwaniec and Martin [14] extended this result to the
d-dimensional setting: they proved that for 1 < p < oo and any function f € LP(R%),

IR, fll oy < Coll fllpeys J=1,2,....d, 3)

and the constant C, cannot be decreased. In other words, they showed that the norms
IR j”Lp(Rd)*) LP(RY) and |H|lLr®)—Lr@®) coincide. An alternative, probabilistic proof of the
estimate (3), based on a sharp estimate for orthogonal martingales, was given by Bafiuelos and
Wang in [1].

Our motivation comes from the question about the limit case p = 1. Riesz transforms are not
bounded on L!, but there are several important substitutes for (3). Kolmogorov [16] proved the
weak-type (1, 1) estimate

{xeR: [Hfx)| =1} <callflpw)

for some universal constant ¢; < co. The optimal value of ¢; was found by Davis [5] to be equal
to
1 +5 + + +
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This result was further extended by Janakiraman [15], who established the weak-type (p, p)
bound
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