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a b s t r a c t

Compression algorithms are deeply used in Wireless Sensor Networks (WSNs) for data aggregation in
order to reduce energy consumption and therefore increasing network lifetime. In this paper we
compare several lossless compression algorithms by means of real-world data. Moreover we present a
simple and effective lossless compression algorithm that is able to outperform existing solutions and
that, considering its inherent low complexity and memory requirements, is well suited for WSNs.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The use of wireless sensor networks (WSNs) for data acquisition
is now widespread. Today, in fact, WSN represents a great tool for
military, telemedicine, home automation, farming and, in general,
for scientific applications. Basically, a WSN is made by a distributed
set of sensor nodes, each of which consists of four basic elements: a
sensing module (sensors and A/D converter), a micro-controller, a
communication unit, and a power supply module (Akyildiz et al.,
2002). Due to economical reasons, power supply modules are
usually based on small size batteries that in most application
scenarios are difficult or even impossible to replace or recharge.
So the most important design parameter for WSNs is usually energy
consumption. A sensor node uses its energy mainly to the activities
of sensing, data processing and communication. Among these three
functions, the last is the one that requires the greatest amount of
energy. In commonly used sensor nodes, in fact, transmitting a
single bit on the radio channel needs the same energy required to
perform around 3000 instructions (Wang et al., 2010).

As a consequence energy saving can be achieved through
mainly two approaches: duty cycling (Campobello et al., 2010;
Dargie, 2012), e.g. by switching-off the transmitter when it is not
in use, and data aggregation (Campobello et al., 2013; Liao et al.,
2008), e.g. an on board pre-processing within the sensor node,
with the aim of reducing the number of bits to be transmitted.

Most data aggregation techniques adopt compression algo-
rithms for reducing the number of bits to be transmitted and
therefore reducing energy consumption and increase network
lifetime (Srisooksai et al., 2012). In general lossy compression
algorithms allow much higher compression ratios, however loss-
less compression algorithms are widespread in sensor networks
and are mandatory in several scenarios. For instance this is true in
new scientific experiments (where accuracy of observations is
critical and there is no knowledge about tolerable errors) and in
the case of WSNs developed for biomedical and health-related
signals (where it is necessary to ensure that medically important
details are not lost causing errors in medical diagnosis).

Despite several lossless compression algorithms exist (for
instance the well-known Lempel–Ziv algorithm LZWC: Lempel-
Ziv-Welch Codec), most of them are not suitable when only lim-
ited storage and computational resources are available (Barr and
Asanovic, 2006). This is the case of WSNs, where central proces-
sing units of sensor nodes (motes) are low-cost and low-speed
micro-controllers with just a few kilobytes of memory.

A recent survey on data compression algorithms for WSNs is
reported in Srisooksai et al. (2012). In particular, authors empha-
sizing the fact that “only a few literature works have discussed the
lossless compression for local data compression approaches”.

Motivated by the above paper we compared several lossless
compression algorithms using both Gaussian distributed data and
real-world data.

Moreover we derived a simple and effective lossless compression
algorithm, henceforward named MinDiff, that is able to outperform
conventional lossless compression algorithms and that, considering
its inherent low complexity and memory requirements, is well
suited for low-cost micro-controller and embedded devices as
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those used in WSNs. The proposed algorithm has been tested
with different real-world data sets related to different physical
parameters.

2. Related works

Basically, when local lossless algorithm is considered, the
common approach is to exploit temporal correlation and a simple
method is to use differences among two consecutive samples
(commonly called residues). As shown in Srisooksai et al. (2012)
and references therein, residues of different real-world data
(temperature, humidity, solar radiation, etc.) fit well with Gaussian
or Laplace distributions. As a consequence the basic idea behind
several compression algorithms is to use a dictionary approach to
encode residues near Shannon's entropy on the basis of prelimin-
ary information about their distribution.

Examples of dictionary-based approaches are

� S-LZW (Sadler and Martonosi, 2006) where the authors simplify
the well-known algorithm of Lempel–Ziv–Welch by taking into
account limited resources of sensor nodes. Basically, the algo-
rithm divides data to be compressed into blocks of fixed size,
and then separately compresses each block by using a dic-
tionary of 256 words.

� SHuffman (Marcelloni and Vecchio, 2008), where for each new
measurement xi acquired by the sensor, the residue ri ¼ xi�xi�1

is calculated and encoded by a binary sequence on the basis of the
dictionary reported in Table 1. More precisely, each binary
sequence ðsijaiÞ is composed by a prefix (si) that specifies the
subset in which ri lies and an mi-bit index (ai) that codifies the
position of the value ri within the subset referred by si.
For sake of completeness in the last column of Table 1 we report
the number of bits li needed to encode ri.
This compression technique exploits the correlation between two
consecutive samples allowing us to achieve high compression
ratios when differences have small values and, as reported in
Marcelloni and Vecchio (2008), in this case it outperforms the S-
LZW.

� ND-Encoding (Xuejun and Dingyi, 2010) is a compression
technique able to achieve high compression ratios in the case
of slowly varying data with Normal Distribution. Basically, the
ND-Encoding calculates the residues and encodes them using
the dictionary shown in Table 2 optimized for normal distrib-
uted data with a very small variance (i.e. σ2 ¼ 7).

A second class of compression algorithms is based on a
predictive coding approach. Basically, this class of algorithms is

based on the fact that in most cases it is sufficient to encode only
those residues, resulting from the difference between the pre-
dicted value and the actual value, which fall inside a relatively
small range ½�R;R� and to transmit the values outside this range
(i.e. outliers) as the original raw data. This approach is commonly
known as Two-Modal (TM) transmission.

In order to estimate R and the best code for residues in the
range of ½�R;R�, the TM approach proposed in Liang and Peng
(2010) uses a second-order linear predictor and represents resi-
dues by an M-based alphabet. The authors propose a heuristic
method for the choice of the pair (M,R), but they admit that is still
necessary to develop a formula to optimize the problem of finding
the best pair (M,R) to minimize the size of the compressed data.

The main problem of this approach is that only the sink can
implement the needed estimator due to “huge” complexity of
predictive algorithms in comparison to the limited storage and
computational resources available in sensor motes. So, despite the
sink is energy capable, in the case of sparse multi-hop WSNs, the
energy (and delay) needed for forwarding update messages should
also be considered.

In this paper we propose a simple lossless compression
technique that, in comparison to the previous algorithms, is able
to achieve greater compression ratios exploiting the fact that a
simple prediction can be done directly on sensor nodes using the
range of the actual set of data.

In the following sections, after formally defining the compres-
sion ratio, we present the basic idea underlying the proposed
method and its performance.

3. Entropy and compression ratio

We can measure performance of a compression algorithm
using the compression ratio hereby defined as

rc ¼ 1� of bits after compression
of bits before compression

ð1Þ

Obviously better compression algorithms have greater com-
pression ratios.

As well known, when compression of discrete sources is
considered, Shannon's entropy H gives the lossless compression
limit. Therefore ideal (maximum) lossless compression ratio con-
sidering blocks of N correlated values of w-bit each can be
obtained as

rC;ideal ¼ 1�HðX1;…XNÞ
w � N ð2Þ

where HðX1;…XNÞ is the joint entropy. In the particular case of
Gaussian correlated data, under suitable assumptions and without
loss of generality, it can be shown that, considering X1;…;XN

obtained from quantization of continuous Gaussian variables
Y1;…;YN , it follows Cover and Thomas (1991)

HðX1;…XNÞ ¼ hðY1;…YNÞ ¼ 1
2 log 2ðð2πeÞN � Σ Þ

���� ð3Þ

Table 1
SHuffman dictionary.

ri si mi li

0 00 0 2
�1,þ1 010 1 4
�3,�2,þ2,þ3 011 2 5
�7;…; �4; þ4;…; þ7 100 3 6
�15;…; �8; þ8;…; þ15 101 4 7
�31;…; �16; þ16;…; þ31 110 5 8
�63;…; �32; þ32;…; þ63 1110 6 10
�127;…; �64; þ64;…; þ127 11110 7 12
�255;…; �128; þ128;…; þ255 111110 8 14
�511;…; �256; þ256;…; þ511 1111110 9 16
�1023;…; �512; þ512;…; þ1023 11111110 10 18
�2047;…; �1024; þ1024;…; þ2047 111111110 11 20
�4095;…; �2048; þ2048;…; þ4095 1111111110 12 22
�8191;…; �4096; þ4096;…; þ8191 11111111110 13 24
�16383;…; �8192; þ8192;…; þ16383 111111111110 14 26

Table 2
ND-Encoding dictionary.

ri si mi li

0 00 0 2
�1,þ1 01 1 3
�3,�2,þ2,þ3 10 2 4
�5,�4,þ4,þ5 110 2 5
�7,�6,þ6,þ7 1110 2 6
All others’ data 1111 w 4þw
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