

Available online at www.sciencedirect.com

JOURNAL OF Functional **Analysis**

Journal of Functional Analysis 259 (2010) 359–383

www.elsevier.com/locate/jfa

Modified zeta functions as kernels of integral operators

Jan-Fredrik Olsen¹

Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway

Received 23 July 2009; accepted 8 April 2010

Communicated by C. Kenig

Abstract

The modified zeta functions $\sum_{n \in K} n^{-s}$, where $K \subset \mathbb{N}$, converge absolutely for Re *s* > 1. These generalise the Riemann zeta function which is known to have a meromorphic continuation to all of $\mathbb C$ with a single pole at $s = 1$. Our main result is a characterisation of the modified zeta functions that have pole-like behaviour at this point. This behaviour is defined by considering the modified zeta functions as kernels of certain integral operators on the spaces $L^2(I)$ for symmetric and bounded intervals $I \subset \mathbb{R}$. We also consider the special case when the set $K \subset \mathbb{N}$ is assumed to have arithmetic structure. In particular, we look at local *L*^{*p*} integrability properties of the modified zeta functions on the abscissa Re *s* = 1 for $p \in [1, \infty]$. © 2010 Elsevier Inc. All rights reserved.

Keywords: Zeta function; Integral operator; Frame theory; Tauberian theory

1. Introduction

We consider the behaviour of the modified zeta functions defined by

$$
\zeta_K(s) = \sum_{n \in K} \frac{1}{n^s}, \quad K \subset \mathbb{N},\tag{1.1}
$$

near the point $s = 1$. Here $s = \sigma + i t$ denotes the complex variable. The infinite series defining these functions converge absolutely in the half-plane $\sigma > 1$. We refer to these as *K*-zeta functions. Note that for $K = N$, the formula (1.1) defines the Riemann zeta function.

0022-1236/\$ – see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2010.04.009

E-mail address: janfreol@math.ntnu.no.

¹ The author is supported by the Research Council of Norway grant $160192/V30$.

The main objective of this paper is, for general $K \subset \mathbb{N}$, to find an operator-theoretic generalisation of the classical result, due to B. Riemann, that the Riemann zeta function can be expressed as

$$
\zeta(s) = \frac{1}{s - 1} + \psi(s),\tag{1.2}
$$

where ψ is an entire function. (See [5] for an extensive discussion, as well as an English translation, of Riemann's original paper.)

To motivate this approach, we note that although N. Kurokawa [16] found sufficient conditions on the sets *K* for ζ_K to have an analytic continuation across the abscissa $\sigma = 1$, it was shown by J.-P. Kahane and H. Queffelec [11,26] that for most choices of the subset *K*, in the sense of Baire categories, the *K*-zeta functions have the abscissa $\sigma = 1$ as a natural boundary. So, instead of looking at the formula (1.2) as a statement about analytic continuation, we consider it as saying that the local behaviour of $\zeta(s)$ at $s = 1$ is an analytic, and therefore small, perturbation of a pole with residue one.

To interpret this in operator-theoretic terms, we define, for *K* ⊂ N and intervals *I* of the form $(-T, T)$ with finite $T > 0$, the family of operators

$$
\mathcal{Z}_{K,I}: g \in L^2(I) \longmapsto \lim_{\delta \to 0} \frac{\chi_I(t)}{\pi} \int_I g(\tau) \operatorname{Re} \zeta_K\big(1 + \delta + \mathrm{i} (t - \tau)\big) d\tau \in L^2(I).
$$

Here the characteristic function χ ^{*I*} is applied to emphasise that we look at $L^2(I)$ as a subspace of $L^2(\mathbb{R})$. To understand these operators, we consider the example $K = \mathbb{N}$. The formula (1.2) implies

$$
\operatorname{Re}\zeta_{\mathbb{N}}(1+\delta+{\rm i}t)=\frac{\delta}{\delta^2+t^2}+\operatorname{Re}\psi(1+\delta+{\rm i}t),
$$

whence

$$
\mathcal{Z}_{\mathbb{N},I} = \text{Id} + \Psi_{\mathbb{N},I},\tag{1.3}
$$

for a compact operator $\Psi_{N,I}$ and the identity operator Id. Indeed, the term $\pi^{-1}\delta/(\delta^2 + t^2)$ is the Poisson kernel which, under convolution, gives rise to the identity operator, while convolution with continuous kernels give compact operators (see Lemma 2). Hence, $\mathcal{Z}_{N,I}$ is a compact, and therefore a small perturbation of the identity operator.

In Theorem 1, we generalise the above formula in the following manner. We show that given *K* ⊂ N, and a bounded and symmetric interval *I* ⊂ ℝ, there exist a subset *L* ⊂ ℝ and a compact operator $\Phi_{K,I}$ such that

$$
\mathcal{Z}_{K,I} = \chi_I \mathcal{F}^{-1} \chi_L \mathcal{F} + \Phi_{K,I}.
$$

We remark that, intuitively, large $K \subset \mathbb{N}$ should correspond to large $L \subset \mathbb{R}$. In fact, it follows from our construction (see (2.1) below) that if $K = \mathbb{N}$ then $L = \mathbb{R}$. Hence, $\chi_l \mathcal{F}^{-1} \chi_l \mathcal{F} = \text{Id}$ and we obtain again the formula (1.3).

Download English Version:

<https://daneshyari.com/en/article/4591188>

Download Persian Version:

<https://daneshyari.com/article/4591188>

[Daneshyari.com](https://daneshyari.com)