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Abstract

This paper is concerned with the asymptotic stability of degenerate stationary waves for viscous con-
servation laws in the half space. It is proved that the solution converges to the corresponding degenerate
stationary wave at the rate t−α/4 as t → ∞, provided that the initial perturbation is in the weighted space
L2

α = L2(R+; (1 + x)α) for α < αc(q) := 3 + 2/q, where q is the degeneracy exponent. This restriction
on α is best possible in the sense that the corresponding linearized operator cannot be dissipative in L2

α

for α > αc(q). Our stability analysis is based on the space-time weighted energy method combined with
a Hardy type inequality with the best possible constant.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

We study the stability problem of degenerate stationary waves for viscous conservation laws
in the half space x > 0:

ut + f (u)x = uxx,

u(0, t) = −1, u(x,0) = u0(x). (1.1)
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Here the initial function is assumed to satisfy u0(x) → 0 as x → ∞, and f (u) is a smooth
function of the form

f (u) = 1

q
(−u)q+1(1 + g(u)

)
, f ′′(u) > 0 for −1 � u < 0, (1.2)

where q is a positive integer (degeneracy exponent) and g(u) = O(|u|) for u → 0. Since f (0) =
f ′(0) = 0 and f (u) is strictly convex for −1 � u < 0, we see that f (u) > 0 for −1 � u < 0. In
particular, we have 1 + g(u) > 0 for −1 � u � 0. In this situation, the corresponding stationary
problem admits a unique solution φ(x) (called degenerate stationary wave), which verifies

φx = f (φ),

φ(0) = −1, φ(x) → 0 as x → ∞. (1.3)

We see easily that φ(x) behaves like φ(x) ∼ −(1 + x)−1/q . In particular, we have φ(x) =
−(1 + x)−1/q when g(u) ≡ 0.

To discuss the stability of the degenerate stationary wave φ(x), we introduce the perturba-
tion v by u(x, t) = φ(x) + v(x, t) and rewrite the problem (1.1) as

vt + (
f (φ + v) − f (φ)

)
x

= vxx,

v(0, t) = 0, v(x,0) = v0(x), (1.4)

where v0(x) = u0(x) − φ(x), and v0(x) → 0 as x → ∞. The stability of degenerate stationary
waves was first studied in [15]. It was proved in [15] that if the initial perturbation v0(x) is in
the weighted space L2

α , then the perturbation v(x, t) decays in L2 at the rate t−α/4 as t → ∞,
provided that α < α∗(q), where

α∗(q) := (
q + 1 +

√
3q2 + 4q + 1

)
/q.

The decay rate t−α/4 obtained in [15] would be optimal but the restriction α < α∗(q) was not
very sharp. The main purpose of this paper is to relax this restriction. Indeed, by employing the
space–time weighted energy method in [15] and by applying a Hardy type inequality with the
best possible constant (see Proposition 2.3), we show the same decay rate t−α/4 under the weaker
restriction α < αc(q) := 3 + 2/q (see Theorem 4.1). Notice that α∗(q) < αc(q). It is interesting
to note that a similar restriction on the weight is imposed also for the stability of degenerate
shock profiles (see [10]). We remark that our stability result for degenerate stationary waves is
completely different from those for non-degenerate case. In fact, for non-degenerate stationary
waves, we have the better decay rate t−α/2 for the perturbation without any restriction on α.
See [4–6,14,16] for the details. See also [2,7,9,11] for the related stability results for stationary
waves.

In this paper we also discuss the dissipativity of the following linearized operator associated
with (1.4):

Lv = vxx − (
f ′(φ)v

)
x
. (1.5)
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