

Available online at www.sciencedirect.com

JOURNAL OF Functional Analysis

Journal of Functional Analysis 256 (2009) 4071-4094

www.elsevier.com/locate/jfa

Rearrangement invariance of Rademacher multiplicator spaces

Serguei V. Astashkin^a, Guillermo P. Curbera^{b,*,1}

^a Department of Mathematics, Samara State University, ul. Akad. Pavlova 1, 443011 Samara, Russia ^b Facultad de Matemáticas, Universidad de Sevilla, Aptdo. 1160, Sevilla 41080, Spain

Received 6 October 2008; accepted 23 December 2008

Available online 19 January 2009

Communicated by N. Kalton

Abstract

Let X be a rearrangement invariant function space on [0, 1]. We consider the Rademacher multiplicator space $\Lambda(\mathcal{R}, X)$ of all measurable functions x such that $x \cdot h \in X$ for every a.e. converging series $h = \sum a_n r_n \in X$, where (r_n) are the Rademacher functions. We study the situation when $\Lambda(\mathcal{R}, X)$ is a rearrangement invariant space different from L^{∞} . Particular attention is given to the case when X is an interpolation space between the Lorentz space $\Lambda(\varphi)$ and the Marcinkiewicz space $M(\varphi)$. Consequences are derived regarding the behaviour of partial sums and tails of Rademacher series in function spaces. © 2009 Elsevier Inc. All rights reserved.

Keywords: Rademacher functions; Rearrangement invariant spaces

Introduction

In this paper we study the behaviour of the Rademacher functions (r_n) in function spaces. Let \mathcal{R} denote the set of all functions of the form $\sum a_n r_n$, where the series converges a.e. For a rearrangement invariant (r.i.) space X on [0, 1], let $\mathcal{R}(X)$ be the closed linear subspace of X given by $\mathcal{R} \cap X$. The *Rademacher multiplicator space* of X is the space $\Lambda(\mathcal{R}, X)$ of all measurable functions $x : [0, 1] \to \mathbb{R}$ such that $x \sum a_n r_n \in X$, for every $\sum a_n r_n \in \mathcal{R}(X)$. It is a

* Corresponding author.

E-mail addresses: astashkn@ssu.samara.ru (S.V. Astashkin), curbera@us.es (G.P. Curbera).

¹ Partially supported D.G.I. #BFM2003-06335-C03-01 (Spain).

0022-1236/\$ – see front matter @ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2008.12.021

Banach function space on [0, 1] when endowed with the norm

$$\|x\|_{A(\mathcal{R},X)} = \sup \left\{ \left\| x \sum a_n r_n \right\|_X \colon \sum a_n r_n \in X, \ \left\| \sum a_n r_n \right\|_X \leqslant 1 \right\}.$$

The space $\Lambda(\mathcal{R}, X)$ can be viewed as the space of operators from $\mathcal{R}(X)$ into the whole space X given by multiplication by a measurable function.

The Rademacher multiplicator space $\Lambda(\mathcal{R}, X)$ was firstly considered in [8] where it was shown that for a broad class of classical r.i. spaces X the space $\Lambda(\mathcal{R}, X)$ is not r.i. This result was extended in [2] to include all r.i. spaces such that the lower dilation index γ_{φ_X} of their fundamental function φ_X satisfies $\gamma_{\varphi_X} > 0$. This result motivated the study the symmetric kernel Sym(\mathcal{R}, X) of the space $\Lambda(\mathcal{R}, X)$, that is, the largest r.i. space embedded into $\Lambda(\mathcal{R}, X)$. The space Sym(\mathcal{R}, X) was studied in [2], where it was shown that, if X is an r.i. space satisfying the Fatou property and $X \supset L_N$, where L_N is the Orlicz space with $N(t) = \exp(t^2) - 1$, then Sym(\mathcal{R}, X) is the r.i. space with the norm $||x|| := ||x^*(t) \log^{1/2} (2/t)||_X$. It was also shown that any space X which has the Fatou property and is an interpolation space for the couple $(L \log^{1/2} L, L^{\infty})$ can be realized as the symmetric kernel of a certain r.i. space. The opposite situation is when the Rademacher multiplicator space $\Lambda(\mathcal{R}, X)$ is r.i. The simplest case of this situation is when $\Lambda(\mathcal{R}, X) = L^{\infty}$. In [1] it was shown that $\Lambda(\mathcal{R}, X) = L^{\infty}$ holds for all r.i. spaces X which are interpolation spaces for the couple (L^{∞}, L_N) . It was shown in [3] that $\Lambda(\mathcal{R}, X) = L^{\infty}$ if and only if the function $\log^{1/2}(2/t)$ does not belong to the closure of L^{∞} in X.

In this paper we investigate the case when the Rademacher multiplicator space $\Lambda(\mathcal{R}, X)$ is an r.i. space different from L^{∞} . Examples of this situation were considered in [2,8,9]. In all cases they were spaces X consisting of functions with exponential growth.

The paper is organized as follows. Section 1 is devoted to the preliminaries. In Section 2 we study technical conditions on an r.i. space X and its fundamental function φ . In Section 3 we present a sufficient condition for $\Lambda(\mathcal{R}, X)$ being r.i. (Theorem 3.4). For this, two results are needed. Firstly, that the symmetric kernel Sym (\mathcal{R}, X) is a maximal space (Proposition 3.1), and secondly, a condition, of independent interest, on the behaviour of logarithmic functions on an r.i. space (Proposition 3.3). Section 4 is devoted to the study of necessary conditions for $\Lambda(\mathcal{R}, X)$ being an r.i. space. This is done by separately studying conditions on partial sums and tails of Rademacher series (Propositions 4.1 and 4.2). Theorem 4.4 addresses the case when X in an interpolation space for the couple ($\Lambda(\varphi), M(\varphi)$), where $\Lambda(\varphi)$ and $M(\varphi)$ are, respectively, the Lorentz and Marcinkiewicz spaces with the fundamental function φ . Theorem 4.5 specializes the previous result for the case of $X = M(\varphi)$. We end presenting, in Section 5, examples which highlight certain features of the previous results.

1. Preliminaries

Throughout the paper a rearrangement invariant (r.i.) space X is a Banach space of classes of measurable functions on [0, 1] such that if $y^* \leq x^*$ and $x \in X$ then $y \in X$ and $||y||_X \leq ||x||_X$. Here x^* is the decreasing rearrangement of x, that is, the right continuous inverse of its distribution function: $n_x(\tau) = \lambda \{t \in [0, 1]: |x(t)| > \tau \}$, where λ is the Lebesgue measure on [0, 1]. Functions x and y are said to be equimeasurable if $n_x(\tau) = n_y(\tau)$, for all $\tau > 0$. The associated space (or Köthe dual) of X is the space X' of all functions y such that $\int_0^1 |x(t)y(t)| dt < \infty$, for every $x \in X$. It is an r.i. space. The space X' is a subspace of the topological dual X*. If X' is a Download English Version:

https://daneshyari.com/en/article/4591685

Download Persian Version:

https://daneshyari.com/article/4591685

Daneshyari.com