A three-ball intersection property for u-ideals

Vegard Lima ${ }^{\mathrm{a}, *}$, Åsvald Lima ${ }^{\text {b }}$
${ }^{\text {a }}$ Mathematics Department, 202 Mathematical Sciences Bldg, University of Missouri, Columbia, MO 65211, USA
${ }^{\text {b }}$ Department of Mathematics, Agder University College, Serviceboks 422, 4604 Kristiansand, Norway
Received 6 January 2007; accepted 20 June 2007
Available online 24 August 2007
Communicated by G. Pisier

Abstract

First introduced by Casazza and Kalton, u-ideals are generalizations of M-ideals. We characterize uideals of Banach spaces using intersection properties of balls. We also give examples showing that our results are best possible.

© 2007 Elsevier Inc. All rights reserved.
Keywords: u-Ideals; Center of symmetry; Intersection properties of balls

1. Introduction

Let X be a closed subspace of a Banach space Y. In [4], Godefroy, Kalton and Saphar introduced the notion of an ideal. X is an ideal in Y if there exists a norm one projection P on Y^{*} with $\operatorname{ker} P=X^{\perp}$, the annihilator of X. According to Casazza and Kalton [2] X is a u-ideal in Y if $I-2 P$ is an isometry.

Godefroy, Kalton and Saphar studied u-ideals and related notions in [4]. Following [4] we introduce the following notation that will be used throughout. Let X be a closed subspace of a Banach space Y and let i_{X} be the natural embedding $i_{X}: X \rightarrow Y$. If P is a norm one projection on Y^{*} with ker $P=X^{\perp}$ we may define a norm one operator $T: Y \rightarrow X^{* *}$ by letting

$$
\begin{equation*}
\left\langle i_{X}^{*} y^{*}, T(y)\right\rangle=\left\langle y, P\left(y^{*}\right)\right\rangle \tag{1.1}
\end{equation*}
$$

[^0]for all $y \in Y$ and $y^{*} \in Y^{*}$. Then $T(x)=x$ for all $x \in X$ and if $I-2 P$ is an isometry then $\left\|y-2 i_{X}^{* *} T(y)\right\|=\|y\|$ for all $y \in Y$. Furthermore, if we let $V=P\left(Y^{*}\right)$, then X being a u-ideal in Y means that $Y^{*}=V \oplus X^{\perp}$ and $\|v+\eta\|=\|v-\eta\|$ for all $v \in V$ and $\eta \in X^{\perp}$. X is said to be an M-ideal in Y [1,5] if this is an ℓ_{1} sum, i.e. $Y^{*}=V \oplus_{1} X^{\perp}$.

In this paper we will characterize u-ideals using intersection properties of balls. Characterizations of M-ideals by intersection properties of balls can be found already in Alfsen and Effros [1] where M-ideals were introduced (see e.g. [1, Theorems 5.8 and 5.9]).

In [7, Theorem 6.17] the second named author proved the following.
Theorem 1.1. (See [7].) Let X be a closed subspace of a Banach space Y. The following statements are equivalent.
(a) X is an M-ideal in Y.
(b) For every $y \in B_{Y}$ the intersection $X \cap \bigcap_{i=1}^{3} B\left(y+x_{i}, 1+\varepsilon\right) \neq \emptyset$ for every collection of three points $\left(x_{i}\right)_{i=1}^{3} \subset B_{X}$ and $\varepsilon>0$.

The following version of Lemma 3.3 in [4] motivates why we consider the type of balls we do in this paper.

Lemma 1.2. (See [4].) Let X be a closed subspace of a Banach space Y. If X is a u-ideal in Y then for every $\varepsilon>0, y \in Y$ and $x \in X$ there is an $x_{0} \in X$ such that

$$
\left\|y+x-2 x_{0}\right\|<\|y-x\|+\varepsilon .
$$

This inequality can be written $2 x_{0} \in B(y+x,\|y-x\|+\varepsilon)$. Using this we now state our first main result.

Theorem 1.3. Let X be a closed subspace of a Banach space Y and let $y \in Y \backslash X$ and $Z=$ $\operatorname{span}(X,\{y\})$. The following statements are equivalent.
(a) X is a u-ideal in Z.
(b) $X^{\perp \perp} \cap \bigcap_{x \in X} B_{Z^{* *}}(y+x,\|y-x\|) \neq \emptyset$.
(c) $X \cap \bigcap_{i=1}^{n} B_{Z}\left(y+x_{i},\left\|y-x_{i}\right\|+\varepsilon\right) \neq \emptyset$ for every finite collection $\left(x_{i}\right)_{i=1}^{n} \subset X$ and $\varepsilon>0$.
(d) $X \cap \bigcap_{i=1}^{3} B_{Z}\left(y+x_{i},\left\|y-x_{i}\right\|+\varepsilon\right) \neq \emptyset$ for every collection of three points $\left(x_{i}\right)_{i=1}^{3} \subset X$ and $\varepsilon>0$.

Theorem 1.3 will be proved in Section 2. That section also contains a general result, Proposition 2.6, about centers of symmetry for compact convex sets inspired by the proof of Theorem 1.3.

From Theorem 1.1 we see that X is an M-ideal in Y if and only if X is an M-ideal in Z for every subspace Z of Y containing X such that $\operatorname{dim} Z / X=1$. It is also known (see e.g. [3, Théorème 2.14] or [8, Proposition 2.1]) that X is an ideal in Y if and only if X is an ideal in Z for every subspace Z of Y with $\operatorname{dim} Z / Y<\infty$; and this is not equivalent to X being an ideal in Z for every subspace Z of Y with $\operatorname{dim} Z / X=1$ by an example of Lindenstrauss [9, p. 78]. For u-ideals we have the following.

https://daneshyari.com/en/article/4591835

Download Persian Version:

https://daneshyari.com/article/4591835

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: lima@math.missouri.edu (V. Lima), asvald.lima@hia.no (A. Lima).

