

JOURNAL OF Functional Analysis

Journal of Functional Analysis 254 (2008) 2294-2302

www.elsevier.com/locate/jfa

Banach spaces with the Daugavet property, and the centralizer [☆]

Julio Becerra Guerrero a, Angel Rodríguez-Palacios b,*

^a Universidad de Granada, Facultad de Ciencias, Departamento de Matemática Aplicada, 18071-Granada, Spain
 ^b Universidad de Granada, Facultad de Ciencias, Departamento de Análisis Matemático, 18071-Granada, Spain

Received 3 September 2007; accepted 20 November 2007

Available online 22 January 2008

Communicated by N. Kalton

Abstract

We introduce representable Banach spaces, and prove that the class \mathcal{R} of such spaces satisfies the following properties:

- (1) Every member of \mathcal{R} has the Daugavet property.
- (2) It *Y* is a member of \mathcal{R} , then, for every Banach space *X*, both the space $\mathcal{L}(X,Y)$ (of all bounded linear operators from *X* to *Y*) and the complete injective tensor product $X \otimes_{\epsilon} Y$ lie in \mathcal{R} .
- (3) If K is a perfect compact Hausdorff topological space, then, for every Banach space Y, and for most vector space topologies τ on Y, the space $C(K, (Y, \tau))$ (of all Y-valued τ -continuous functions on K) is a member of \mathcal{R} .
- (4) If K is a perfect compact Hausdorff topological space, then, for every Banach space Y, most $\mathcal{C}(K, Y)$ superspaces (in the sense of [V. Kadets, N. Kalton, D. Werner, Remarks on rich subspaces of Banach
 spaces, Studia Math. 159 (2003) 195–206]) are members of \mathcal{R} .
- (5) All dual Banach spaces without minimal M-summands are members of \mathcal{R} .
- © 2007 Elsevier Inc. All rights reserved.

Keywords: Daugavet property; Centralizer

E-mail addresses: juliobg@ugr.es (J.B. Guerrero), apalacio@ugr.es (A. Rodríguez-Palacios).

^{*} Partially supported by Junta de Andalucía grants FQM 0199 and FQM 1215, and Projects I+D MCYT MTM-2004-03882 and MTM-2006-15546-C02-02.

Corresponding author.

1. Introduction

A Banach space X is said to have the Daugavet property if the equality $\|\operatorname{Id} + T\| = 1 + \|T\|$ holds for every bounded linear operator T on X with one-dimensional range. Classical examples of Banach spaces fulfilling the Daugavet property are $\mathcal{C}(K)$, for every perfect compact Hausdorff topological space K, and $L_1(\mu)$, for every non-atomic measure μ . Since Daugavet's pioneering paper [11], the study of Banach spaces having the Daugavet property has attracted the attention of many authors, and today such a study has attained a flourishing development (see [1–4,15,16, 19–23]).

Concerning stability of the Daugavet property, it is known that this property is preserved by taking arbitrary ℓ_1 - or c_0 -sums [23], and by passing from dual Banach spaces to their preduals. However, unfortunately, not much more is known in this direction. A solution to this handicap consists of the introduction of properties strictly stronger than the one of Daugavet, and which behave better concerning stability (see [8–10,17]).

In the present paper, we follow the line just reviewed. In Section 2, we introduce the notion of a "representable" Banach space (Definition 2.3), prove that representable Banach spaces have the Daugavet property (Lemma 2.4) and that representability passes from a Banach space *Y* to the complete injective tensor product with an arbitrary Banach space (Corollary 2.6), and to the space of all bounded linear operators from an arbitrary Banach space to *Y* (Lemma 5).

Sections 3 and 4 of the paper are devoted to show that the class of representable Banach spaces is reasonably wide. We prove that, if K is a perfect compact Hausdorff topological space, if Y is an arbitrary Banach space, if Z is a norming subspace of Y^* for Y, and if τ is a vector space topology on Y with $\sigma(Y,Z) \leqslant \tau \leqslant n$ (where n stands for the norm topology), then the Banach space $\mathcal{C}(K,(Y,\tau))$ is representable (Theorem 3.1). We also prove that, if K is a perfect compact Hausdorff topological space, if Y is an arbitrary Banach space, and if X is a $\mathcal{C}(K,Y)$ -superspace (in the sense of [17]) which is also a $\mathcal{C}(K)$ -module in the natural way, then X is representable (Theorem 3.4). By the way, Theorems 3.1 and 3.4 are independent (a courtesy of X). Kadets, see Remark 3.3). Finally, we show that every dual Banach space without minimal X-summands is representable (Theorem 4.3). As a consequence, if X and Y are Banach spaces, and if X has no minimal X-summand, then X $\widehat{\otimes}_{\pi}$ Y has the Daugavet property (Corollary 4.7).

To conclude this introduction, let us point out that the definition of a representable Banach space is quite technical, and is inspired by the theory of the "centralizer" and "function module representations" of Banach spaces [7]. Actually, the proof of Theorem 4.3 relies strongly on this theory.

Notation. Throughout this paper \mathbb{K} will mean the field of real or complex numbers. When the field \mathbb{K} has been fixed, and a compact Hausdorff topological space K has been given, we denote by $\mathcal{C}(K)$ the Banach space of all continuous functions from K to \mathbb{K} . Now, let X be a Banach space over \mathbb{K} . We denote by B_X , S_X , and X^* the closed unit ball, the unit sphere, and the (topological) dual, respectively, of X. We denote by w the weak topology of X, and by w^* the weak* topology of X in the case that X is a dual Banach space. Now, let Y be another Banach space over \mathbb{K} . Then the symbol $\mathcal{L}(X,Y)$ (with the usual convention $\mathcal{L}(X) := \mathcal{L}(X,X)$) will stand for the Banach space of all bounded linear operators from X to Y.

Download English Version:

https://daneshyari.com/en/article/4591896

Download Persian Version:

https://daneshyari.com/article/4591896

<u>Daneshyari.com</u>