

Available online at www.sciencedirect.com

JOURNAL OF Functional Analysis

Journal of Functional Analysis 256 (2009) 91-128

www.elsevier.com/locate/jfa

Reduced Weyl asymptotics for pseudodifferential operators on bounded domains II. The compact group case ☆

Roch Cassanas, Pablo Ramacher

Georg-August-Universität Göttingen, Institut für Mathematik, Bunsenstr. 3-5, 37073 Göttingen, Germany

Received 4 October 2007; accepted 28 January 2008

Available online 10 April 2008

Communicated by Paul Malliavin

Abstract

Let $G \subset O(n)$ be a compact group of isometries acting on *n*-dimensional Euclidean space \mathbb{R}^n , and **X** a bounded domain in \mathbb{R}^n which is transformed into itself under the action of *G*. Consider a symmetric, classical pseudodifferential operator A_0 in $L^2(\mathbb{R}^n)$ that commutes with the regular representation of *G*, and assume that it is elliptic on **X**. We show that the spectrum of the Friedrichs extension *A* of the operator res $\circ A_0 \circ \text{ext}: C_c^{\infty}(\mathbf{X}) \to L^2(\mathbf{X})$ is discrete, and using the method of the stationary phase, we derive asymptotics for the number $N_{\chi}(\lambda)$ of eigenvalues of *A* equal or less than λ and with eigenfunctions in the χ -isotypic component of $L^2(\mathbf{X})$ as $\lambda \to \infty$, giving also an estimate for the remainder term for singular group actions. Since the considered critical set is a singular variety, we recur to partial desingularization in order to apply the stationary phase theorem.

© 2008 Elsevier Inc. All rights reserved.

Keywords: Pseudodifferential operators; Asymptotic distribution of eigenvalues; Compact group actions; Peter–Weyl decomposition; Partial desingularization

Contents

1.	Introduction	92
2.	Reduced spectral asymptotics and the approximate spectral projection operators	95

^{*} This research was financed by the grant RA 1370/2-1 of the German Research Foundation (DFG). *E-mail addresses:* cassanas@uni-math.gwdg.de (R. Cassanas), ramacher@uni-math.gwdg.de (P. Ramacher).

^{0022-1236/}\$ – see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2008.01.012

3.	Compact group actions and the principle of the stationary phase	101
4.	Phase analysis and partial desingularization	108
5.	Computation of the leading term	115
6.	Proof of the main result	126
Refe	rences	127

1. Introduction

Let $G \subset O(n)$ be a compact Lie group of isometries acting on Euclidean space \mathbb{R}^n , and **X** a bounded open set of \mathbb{R}^n which is transformed into itself under the action of *G*. Consider the regular representation of *G*

$$T(k)\varphi(x) = \varphi(k^{-1}x) \tag{1}$$

in the Hilbert spaces $L^2(\mathbb{R}^n)$ and $L^2(\mathbf{X})$ of square-integrable functions by unitary operators. As a consequence of the Peter–Weyl theorem, *T* decomposes into isotypic components according to

$$L^{2}(\mathbb{R}^{n}) = \bigoplus_{\chi \in \hat{G}} \mathcal{H}_{\chi}, \qquad L^{2}(\mathbf{X}) = \bigoplus_{\chi \in \hat{G}} \operatorname{res} \mathcal{H}_{\chi},$$

where \hat{G} denotes the set of irreducible characters of G, and res: $L^2(\mathbb{R}^n) \to L^2(\mathbf{X})$ is the natural restriction operator. The spaces \mathcal{H}_{χ} are closed subspaces, and the corresponding orthogonal projection operators are given by

$$P_{\chi} = d_{\chi} \int_{G} \overline{\chi(k)} T(k) \, dk, \qquad (2)$$

where $d_{\chi} = \chi(1)$ is the dimension of any irreducible representation belonging to the character χ , and dk denotes the normalized Haar measure on *G*. In what follows, we do not assume that the boundary $\partial \mathbf{X}$ of \mathbf{X} is smooth, but only that there exists a constant c > 0 such that for any sufficiently small $\varrho > 0$, $\operatorname{vol}(\partial \mathbf{X})_{\varrho} \leq c\varrho$, where $(\partial \mathbf{X})_{\varrho} = \{x \in \mathbb{R}^n : \operatorname{dist}(x, \partial \mathbf{X}) < \varrho\}$, and that $0 \notin \partial \mathbf{X}$.

Consider now a symmetric, classical pseudodifferential operator A_0 in \mathbb{R}^n of order 2m that commutes with the operators T(k) for all $k \in G$. Let a_{2m} be its principal symbol, and assume that there exists a constant $C_0 > 0$ such that

$$a_{2m}(x,\xi) \ge C_0 |\xi|^{2m}, \quad \forall x \in \mathbf{X}, \ \forall \xi \in \mathbb{R}^n.$$
(3)

If we write ext: $C_c^{\infty}(\mathbf{X}) \to L^2(\mathbb{R}^n)$ for the natural extension operator by zero, it turns out that under condition (3), the operator

res
$$\circ A_0 \circ \text{ext}: C_c^{\infty}(\mathbf{X}) \to L^2(\mathbf{X})$$

Download English Version:

https://daneshyari.com/en/article/4591947

Download Persian Version:

https://daneshyari.com/article/4591947

Daneshyari.com