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Abstract

Let G ⊂ O(n) be a compact group of isometries acting on n-dimensional Euclidean space Rn, and X
a bounded domain in Rn which is transformed into itself under the action of G. Consider a symmetric,
classical pseudodifferential operator A0 in L2(Rn) that commutes with the regular representation of G, and
assume that it is elliptic on X. We show that the spectrum of the Friedrichs extension A of the operator res ◦
A0 ◦ ext : C∞

c (X) → L2(X) is discrete, and using the method of the stationary phase, we derive asymptotics
for the number Nχ(λ) of eigenvalues of A equal or less than λ and with eigenfunctions in the χ -isotypic
component of L2(X) as λ → ∞, giving also an estimate for the remainder term for singular group actions.
Since the considered critical set is a singular variety, we recur to partial desingularization in order to apply
the stationary phase theorem.
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1. Introduction

Let G ⊂ O(n) be a compact Lie group of isometries acting on Euclidean space Rn, and X
a bounded open set of Rn which is transformed into itself under the action of G. Consider the
regular representation of G

T (k)ϕ(x) = ϕ
(
k−1x

)
(1)

in the Hilbert spaces L2(Rn) and L2(X) of square-integrable functions by unitary operators. As
a consequence of the Peter–Weyl theorem, T decomposes into isotypic components according to

L2(
R

n
)=⊕

χ∈Ĝ

Hχ , L2(X) =
⊕
χ∈Ĝ

res Hχ ,

where Ĝ denotes the set of irreducible characters of G, and res : L2(Rn) → L2(X) is the natu-
ral restriction operator. The spaces Hχ are closed subspaces, and the corresponding orthogonal
projection operators are given by

Pχ = dχ

∫
G

χ(k)T (k) dk, (2)

where dχ = χ(1) is the dimension of any irreducible representation belonging to the character χ ,
and dk denotes the normalized Haar measure on G. In what follows, we do not assume that
the boundary ∂X of X is smooth, but only that there exists a constant c > 0 such that for any
sufficiently small � > 0, vol(∂X)� � c�, where (∂X)� = {x ∈ Rn: dist(x, ∂X) < �}, and that
0 /∈ ∂X.

Consider now a symmetric, classical pseudodifferential operator A0 in Rn of order 2m that
commutes with the operators T (k) for all k ∈ G. Let a2m be its principal symbol, and assume
that there exists a constant C0 > 0 such that

a2m(x, ξ) � C0|ξ |2m, ∀x ∈ X, ∀ξ ∈ R
n. (3)

If we write ext : C∞
c (X) → L2(Rn) for the natural extension operator by zero, it turns out that

under condition (3), the operator

res ◦ A0 ◦ ext : C∞
c (X) → L2(X)
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