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Abstract

We study degenerate complex Monge–Ampère equations on a compact Kähler manifold (X,ω). We
show that the complex Monge–Ampère operator (ω + ddc·)n is well defined on the class E(X,ω) of ω-
plurisubharmonic functions with finite weighted Monge–Ampère energy. The class E(X,ω) is the largest
class of ω-psh functions on which the Monge–Ampère operator is well defined and the comparison principle
is valid. It contains several functions whose gradient is not square integrable. We give a complete description
of the range of the operator (ω + ddc·)n on E(X,ω), as well as on some of its subclasses. We also study
uniqueness properties, extending Calabi’s result to this unbounded and degenerate situation, and we give
applications to complex dynamics and to the existence of singular Kähler–Einstein metrics.
© 2007 Elsevier Inc. All rights reserved.
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0. Introduction

Let X be a compact connected Kähler manifold of complex dimension n ∈ N
∗. Let ω be a

Kähler form on X. Given μ a positive Radon measure on X such that μ(X) = ∫
X

ωn, we study
the complex Monge–Ampère equation

(
ω + ddcϕ

)n = μ, (MAμ)
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where ϕ, the unknown function, is such that ωϕ := ω+ddcϕ is a positive current. Such functions
are called ω-plurisubharmonic (ω-psh for short). We refer the reader to [19] for basic properties
of the set PSH(X,ω) of all such functions. Here d = ∂ + ∂ and dc = 1

2iπ
(∂ − ∂).

Complex Monge–Ampère equations have been studied by several authors over the last fifty
years, in connection with questions from Kähler geometry and complex dynamics (see [1,14,17,
21,22,25,26,28] for references). The first and cornerstone result is due to S.T. Yau who proved
[28] that (MAμ) admits a solution ϕ ∈ PSH(X,ω) ∩ C∞(X) when μ = f ωn is a smooth volume
form.

Motivated by applications towards complex dynamics, we need here to consider measures μ

which are quite singular, whence to deal with singular ω-psh functions ϕ. We introduce and study
a class E(X,ω) of ω-psh functions for which the complex Monge–Ampère operator (ω+ddcϕ)n

is well defined (see Definition 1.1): following E. Bedford and A. Taylor [6] we show that the
operator (ω + ddcϕ)n is well defined in X \ (ϕ = −∞) for all functions ϕ ∈ PSH(X,ω); the
class E(X,ω) is the set of functions ϕ ∈ PSH(X,ω) such that (ω+ddcϕ)n has full mass

∫
X

ωn in
X \ (ϕ = −∞). When n = dimC X = 1, this is precisely the subclass of functions ϕ ∈ PSH(X,ω)

whose Laplacian does not charge polar sets. It is striking that the class E(X,ω) contains many
functions whose gradient is not square integrable, hence several results to follow have no local
analogue (compare [8,9]).

One of our main results gives a complete characterization of the range of the complex Monge–
Ampère operator on the class E(X,ω).

Theorem A. There exists ϕ ∈ E(X,ω) such that μ = (ω + ddcϕ)n if and only if μ does not
charge pluripolar sets.

An important tool we use is the comparison principle that we establish in Section 1: we
show that E(X,ω) is the largest class of ω-psh functions on which the complex Monge–Ampère
operator (ω + ddc·)n is well defined and the comparison principle is valid. Another crucial tool
for our study is the notion of weighted Monge–Ampère energy, defined as

Eχ(ϕ) :=
∫
X

(−χ) ◦ ϕ
(
ω + ddcϕ

)n
,

where χ : R− → R
− is an increasing function such that χ(−∞) = −∞. The properties of this

energy are quite different whether the weight χ is convex (χ ∈ W−) or concave (χ ∈ W+). We
show (Proposition 2.2) that

E(X,ω) =
⋃

χ∈W−
Eχ (X,ω),

where Eχ (X,ω) denotes the class of functions ϕ ∈ E(X,ω) such that χ(ϕ − supX ϕ) ∈ L1((ω +
ddcϕ)n). At the other extreme, we show (Proposition 3.1) that

PSH(X,ω) ∩ L∞(X) =
⋂

χ∈W+
Eχ (X,ω).
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